Gask-O-Seal® (GOS) **Frequently Asked Questions**

Composite Sealing Systems ("CSS") Division

Do the seal beads have to be in alignment from side-to-side, OR can they be offset? They can be offset and the seal grooves do not need to match top and bottom sides.

What compounds are you able to bond and mold in a Gask-O-Seal[®] (GOS) or Integral Seal[™] configuration?

Just about all elastomers provided by Parker's O-ring and Engineered Seal (OES) Division can be bonded and molded.

What is the minimum land area required for a GOS?

The .250 includes .125 groove and .0625 shutoff area on either side of the groove.

How many styles of GOS are there and their purposes?

Mark I: bi-directional sealing, Mark II: double-seal bead for higher pressure sealing in both direction, Mark VII: unidirectional sealing for high pressure applications.

What material behavior model / models do you recommend for FEA simulation of gasket compression? There are many options, but Parker primarily uses hyperelastic models.

What is the functionality of the cushion in a Mark I GOS?

The cushion serves no sealing purpose; however when compressed against the mating surface, the cushion limits the area of sealing surface area which is exposed to fluid attack. The cushion is also a necessity for the rubber molding process. It is very difficult to shut the mold off at the bottom of the void, so the existence of a cushion next to the void allows for the mold shut-off at the top of the groove.

How tall should the GOS bead be?

The seal bead height is a function of the assembly's total flatness and the contact sealing pressure required for the application depends on the specific material).

© 2022 Parker Hannifin Corporation

CSS FAQ-GOS 5/2022

Composite Sealing Systems Division 1-619-661-7000 | www.parker.com/css

ENGINEERING YOUR SUCCESS.