
Automation 88-017657-01C

USER GUIDE

ADDENDUM

This is an addendum to the 6K product user documentation, and covers these topics:

• Ship kit correction ... page 2

• Ethernet configuration procedures .. page 3

• Servo tuning procedure corrections (using Motion Planner) page 7

• Encoder schematic corrections .. page 10

• Communications Server (COM6SRVR) corrections & enhancements page 11

• OS 5.1.0 firmware enhancements:
- List of new commands .. page 34
- Virtual inputs .. page 35
- Contouring enhancements ... page 36
- PLC Scan Mode enhancements .. page 38
- Ethernet enhancements (OS 5.1.0 and COM6SRVR) page 40
- Gemini Drive stall input (monitoring, error handling) page 42
- Additional status bits in TAS, TASX and TFS page 43
- Controller status (new) ... page 43
- Mapping inputs to an integer variable .. page 45
- String variable (VARS) enhancements ... page 46
- Added Following master (FOLMAS) options page 46
- Increased memory capacity ... page 46
- Support for EVM32 enhancements ... page 46

• EVM32 I/O product family enhancements .. page 47

• Synch Option (synchronous serial bus for multiple 6K units) page 60

DRAFT x4 i
10/22/99, 2:22 pm

Preliminary Material
for internal use only

Page 2 6K Addendum (p/n 88-017657-01C)

Ship Kit

This material supersedes the information on page 3 of the 6K Series Hardware Installation Guide (88-017547-01A).

A ship kit is automatically included with the standard product part number (i.e., 6K2, 6K4, 6K6, or 6K8). If you do not need
a ship kit, you may order the “no kit” (-NK) option (i.e., 6K2-NK, 6K4-NK, 6K6-NK, or 6K8-NK).

The corrected ship kit table is provided below:

Part Name Part Number

One of the following 6K products:

6K2 two-axis controller with ship kit (see 6K-KIT list below) 6K2
6K2 without ship kit... 6K2-NK

6K4 four-axis controller with ship kit (see 6K-KIT list below) 6K4
6K4 without ship kit... 6K4-NK

6K6 six-axis controller with ship kit (see 6K-KIT list below) 6K6
6K6 without ship kit... 6K6-NK

6K8 eight-axis controller with ship kit (see 6K-KIT list below).... 6K8
6K8 without ship kit... 6K8-NK

Ship kit items (6K-KIT): *

6K Series Hardware Installation Guide 88-017547-01
6K Series Command Reference .. 88-017136-01
6K Series Programmer’s Guide ... 88-017137-01
Motion Planner CD-ROM ... 95-017633-01
Ethernet cable (5-foot, RJ-45, cross-over)................................. 71-017635-01
Peel-and-stick labels for onboard I/O cables 87-017636-01

* The panel mounting kit (part number 74-018177-01), which includes two mounting
brackets and four screws (6-32 x ¼), is included with all 6K shipments, independent
of the 6K-KIT.

6K Addendum (p/n 88-017657-01C) Page 3

Ethernet Configuration

This material supplements the information on page 25 of the 6K Series Hardware Installation Guide (88-017547-01A).

Direct PC-to-6K Connection

Computer

Ethernet
Card

6K Controller

“ETHERNET”
Connector

NOTE: Use a “Crossover” Ethernet (10Base-T) cable.
A 5-foot cable is provided in the ship kit (p/n 71-017635-01).

Use Procedure A
(page 4)

Network Connection

Computer

Network

Ethernet
Card

6K Controller

“ETHERNET”
Connector

NOTE: Use a “Straight-Through” Ethernet (10Base-T) cable.

Use Procedure B
(page 5)

Page 4 6K Addendum (p/n 88-017657-01C)

Procedure A (Direct PC-to-6K Connection)

1. Install your Ethernet card and configure it for TCP/IP protocol. Refer to your Ethernet card’s user documentation
for instructions.

2. (see illustration below) Configure your Ethernet card’s TCP/IP properties so that your computer can communicate
directly to the 6K controller.
a. Access the Control Panels directory.
b. Open the Network control panel.
c. In the Network control dialog, select the Configuration tab (95/98) or the Protocols tab (NT) and double-click

the TCP/IP network item to view the TCP/IP Properties dialog.
d. In the TCP/IP Properties dialog, select the IP Address tab, see note below, select “Specify an IP Address”,

type in 192.168.10.31 in the “IP Address” field, and type in 255.255.255.0 in the “Subnet Mask” field.
e. Click the OK buttons in both dialogs to finish setting up your computer’s IP address.

3. Establish an RS-232 communication link between the 6K and your computer (connect to the 6K’s “RS-232”
connector according to the instructions in the 6K Series Hardware Installation Guide).

4. Install Motion Planner on your computer, and launch Motion Planner. Click on the Terminal tab to view the
terminal emulator.

5. In the Terminal window, click on the button to view the Communications Settings dialog. Select the Port tab
and select the COM port that is connected to the 6K’s “RS-232” connector (see Step 3 above). Click OK.

6. Enable Ethernet communication: type the NTFEN2 command and press ENTER.

7. Follow the ARP -S Static Mapping procedure on page 5.

8. Connect the 6K Controller to your computer using a cross-over 10Base-T cable (5-foot cable provided in ship kit).

9. In Motion Planner’s Terminal window, click on the button to view the Communications Settings dialog. Select
the Port tab, select “Network” and type the IP address (192.168.10.30) in the text field. Click OK.

10. You may now communicate to the 6K controller over the Ethernet interface. Reminder: You cannot communicate
to the 6K with simultaneous transmissions over both the “ETHERNET” and “RS-232” (PORT1) connections.

Ethernet Connection Status LEDs (located on the RJ-45 “ETHERNET” connector):
• Green LED turns on to indicate the Ethernet physical connection is OK.
• Yellow LED flashes to indicate the 6K is transmitting over the Ethernet interface.

Make sure this number is different
from the one in the 6K’s IP address.
If the 6K’s default IP address is
unchanged (192.168.10.30), then
select a number other than 30.

NOTE
If you are using a computer that is normally connected to a
network, you should write down the existing IP Address and
Subnet Mask values, so that you may restore them later.

If you are using
Windows NT, select
the “Protocols” tab.

6K Addendum (p/n 88-017657-01C) Page 5

Procedure B (Network Connection)

1. Connect the 6K Controller to your network.

2. Have your network administrator assign a 6K IP address and subnet mask. The factory default 6K IP address is
192.168.10.30; the default mask is Class C.

If the default address and mask are not compatible with your network, you may change them with the NTADDR and
NTMASK commands, respectively (see 6K Series Command Reference for details on the NTADDR and NTMASK
commands). To ascertain the 6K’s Mac address, use the TNTMAC command. The NTADDR, NTMASK and TNTMAC
commands may be sent to the 6K controller over an RS-232 interface (see Steps 3-5). NOTE: If you change the
6K’s IP address or mask, the changes will not take affect until you cycle power or issue a RESET command.

3. Establish an RS-232 communication link between the 6K and your computer (connect to the 6K’s “RS-232”
connector according to the instructions in the 6K Series Hardware Installation Guide).

4. Install Motion Planner on your computer, and launch Motion Planner. Click on the Terminal tab to view the
terminal emulator.

5. In the Terminal window, click on the button to view the Communications Settings dialog. Select the Port tab
and select the COM port that is connected to the 6K’s “RS-232” connector (see Step 3 above). Click OK.

6. Enable Ethernet communication: type the NTFEN2 command and press ENTER.

7. Follow the ARP -S Static Mapping procedure on page 5.

8. In the Terminal window, click on the button to view the Communications Settings dialog. Select the Port tab,
select “Network” and type the IP address in the text field (use 192.168.10.30 unless you changed it with the
NTADDR command). Click OK.

9. You may now communicate to the 6K controller over the Ethernet interface. Reminder: You cannot communicate
to the 6K with simultaneous transmissions over both the “ETHERNET” and “RS-232” (PORT1) connections.

Ethernet Connection Status LEDs (located on the RJ-45 “ETHERNET” connector):
• Green LED turns on to indicate the Ethernet physical connection is OK.
• Yellow LED flashes to indicate the 6K is transmitting over the Ethernet interface.

ARP –S Static Mapping Procedure

If you are using the NTFEN2 setting, follow this procedure to use ARP -S to statically map the
6K’s Ethernet MAC address to its IP address.

Static mapping eliminates the need for the PC to ARP the 6K controller. Resolving the
MAC address to an IP address is known as ARPing. ARPing can be done automatically
(dynamically) by the TCP/IP stack. Alternatively, the user can define the mapping by
statically mapping the MAC address to the IP address. Static mapping has the benefit
that it can reduce communication overhead.

NOTE: Static mapping is necessary only if you are using the NTFEN2 setting.

1. If you have not already done so, follow the Ethernet connection instructions in the 6K
Hardware Installation Guide. Then, follow the appropriate Ethernet configuration
procedure — start on page 3.

2. In Motion Planner’s Terminal window, type TNT and press ENTER. The response
includes the 6K IP address, and the 6K Ethernet address value in hex (this is also known
as the “MAC” address). Write down the IP address and the Ethernet address (hex value)
for later use in the procedure below.

Page 6 6K Addendum (p/n 88-017657-01C)

3. Start a DOS window. The typical method to start a DOS window is to select MS-DOS
Prompt from the Start/Programs menu (see illustration at left).

4. At the DOS prompt, type the arp –s command (see example below) and press ENTER.

arp –s 192.168.10.30 0-90-55-0-0-1 192.168.10.31

6K’s IP Address
(from TNT report)

6K’s Ethernet Address
(from TNT report)

IP Address of Ethernet Card

Spaces
(press the space bar)

5. To verify the mapped addresses, type the arp –a command and press ENTER.

If you receive the response “No ARP Entries Found”:

a. Switch to the Motion Planner Terminal window, type NTFEN1 and press ENTER, then
type RESET and press ENTER.

b. Switch to the DOS window, type the ping command and press ENTER:

ping 192.168.10.30

6K’s IP Address (from TNT report)(space)

If your PC responds with “Request
Timed Out”, check your Ethernet
wiring and IP address setting.

c. Repeat the arp –s command as instructed above. Use arp –a to verify.

d. Switch to the Motion Planner Terminal window, type NTFEN2 and press ENTER, then
type RESET and press ENTER.

6. (OPTIONAL) Automate the arp –s static mapping command. This allows your PC to
automatically perform the static mapping when it is booted; otherwise, you will have to
manually perform static mapping (Steps 2-5 above) every time you boot your PC.

• Windows 95/98: Add the arp –s command to the Autoexec.bat file.

• Windows NT: Create a batch file that contains the arp –s command. Save the file (name the
file “6KARP.BAT”) to the root directory on the C drive. Using Windows Explorer, locate the
6KARP.BAT file, create a shortcut, then cut and paste the shortcut into the StartUp directory.
Windows NT has several StartUp directories to accommodate various user configurations. We
recommend using the Administrators or All Users locations. For example, you can paste the
shortcut into the WinNt\Profiles\AllUsers\StartMenu\Programs\StartUp directory, allowing all
users to statically map the IP and Mac addresses whenever the PC is booted.

7. Return to procedure A or B (page 4 or 5) to finish the configuration process.

6K Addendum (p/n 88-017657-01C) Page 7

Servo Tuning Procedure

This material supersedes the information on page 51 of the 6K Series Hardware Installation
Guide (88-017547-01A) and page 70 of the 6K Series Programmer’s Guide (88-017137-01A):

To assure optimum performance you should tune your servo system. The goal of the tuning process is to define the gain
settings, servo performance, and feedback setup (see command list below) that you can incorporate into your application
program. (Typically, these commands are placed into a setup program). Servo tuning should be performed as part of the
application setup process, as described below

 To tune your servo system: (4-step process)

1. After you launch Motion Planner, you will see the Editor window. Click on the “Tuner” window tab to bring the
servo tuning utility to the front.

2. Click the “Start” button to send the pre-programmed step output to the drive. Notice that the graph display draws
the commanded and actual velocity profiles so that you can graphically tune your servo system.

Optimize the proportional (SGP) and velocity (SGV) values by iteratively changing gains and viewing the results
on the graph display. The object is to achieve a 1st order response (minimal overshoot and close position
tracking). The typical process is illustrated in the
flow diagram on the next page.

1st Order Response:

V
el

oc
ity

Time

Commanded Velocity
(dashed line)

Actual Velocity
(solid line)

Graphed commanded & actual velocity profiles.
Y axis is velocity, X axis is time.

Type in gain settings here.

Repeat the tuning process for each axis.

Click “Setup” to view the setup dialog, where you can
change the tuning profile and data capture parameters.

Click “Copy Gains” to copy the all gain settings for all
axes to your computer’s clipboard. Paste the gains into
your user program in the Editor window.

Click “Start” to initiate the tuning profile and capture
data to the graph display. This button changes to
“Abort” so that you can stop the profile in progress.

Page 8 6K Addendum (p/n 88-017657-01C)

 Basic Tuning Process

��

������	�
���
��
��

��

������	�
���
��
��

������	�
���
��
��

��

��

������	�
���
��
��

��

������	�
���
��
��

��

������	�
���
��
��

������	�
���
��
��

�����

����

6K Addendum (p/n 88-017657-01C) Page 9

3. Repeat step 2 for each axis.

4. When you have determined which tuning gains are best for your application’s performance, insert the gain
commands into your setup program: (refer also to the illustration below)

a. Click the “Copy Gains” to Clipboard button. This copies the gain commands to your computer’s clipboard.
b. Click the “Editor” tab to bring the program editor to the front.
c. Place the cursor at the location in your program where you wish to insert the gain commands

(see NOTE below).
d. Paste the gain commands at the location of the cursor. Use the <ctrl>V keystroke shortcut or use the

“Paste” command from the “Edit” pull-down menu.

NOTE

The tuning gains are specific to the feedback source selection in effect at the time the gain
commands are executed. The factory default feedback source (selected with the SFB command) is
encoder feedback. The illustration below demonstrates where to insert the gain commands relative
to the SFB command.

If your application requires you to switch between feedback sources for the same axis, then for
each feedback source you must select the source with the SFB command and then execute the
tuning gain commands relevant to the feedback source (an example is provided in the illustration
below).

These tuning gains are
specific to encoder
feedback (SFB1,1).

These tuning gains are
specific to analog input
feedback (SFB2,2).

Page 10 6K Addendum (p/n 88-017657-01C)

Tuning-Related Commands (see 6K Series Command Reference for details)

Tuning Gains:

SGP...........Sets the proportional gain in the PIV&F servo algorithm.

SGI...........Sets the integral gain in the PIV&F servo algorithm.

SGV...........Sets the velocity gain in the PIV&F servo algorithm.

SGAF.........Sets the acceleration feedforward gain in the PIV&Fa
algorithm.

SGVF.........Sets the velocity feedforward gain in the PIV&Fv
algorithm.

SGILIMSets a limit on the correctional control signal that results
from the integral gain action trying to compensate for a
position error that persists too long.

SGENB.......Enables a previously-saved set of PIV&F gains. A set of
gains (specific to the current feedback source selected
with the SFB command) is saved using the SGSET
command.

SGSET.......Saves the presently-defined set of PIV&F gains as a gain
set (specific to the current feedback source on each
axis). Up to 5 gain sets can be saved and enabled at any
point in a move profile, allowing different gains at
different points in the profile.

Feedback Setup:

SFB Selects the servo feedback device (encoder or analog
input). To use analog input feedback, you must first use
the ANIFB command to configure the targeted analog
input to be used for feedback.
IMPORTANT: Parameters for scaling, tuning gains, max.
position error (SMPER), and position offset (PSET) are
specific to the feedback device selected (with the SFB
command) at the time the parameters are entered (see
programming examples in the 6K Programmer’s Guide).

ERES Encoder resolution.

SMPER Sets the maximum allowable error between the
commanded position and the actual position as
measured by the feedback device. If the error exceeds
this limit, the controller activates the Shutdown output
and sets the DAC output to zero (plus any SOFFS offset).
If there is no offset, the motor will freewheel to a stop.
You can enable the ERROR command to continually
check for this error condition (ERROR.12-1), and when it
occurs to branch to a programmed response defined in
the ERRORP program.

Encoder Schematic Corrections

This material supersedes the schematic on page 19 of the 6K Series Hardware Installation Guide (88-017547-01A).

ENCODER Connector

15

69

Internal Schematic

1.33 KW

681 W
1.33 KW

ISO GND

+5VDC

+5VDC +5VDC

Pin 2 (A+)

Pin 3 (A-)

Pin 4 (B+)

Pin 5 (B-)

Pin 6 (Z+)

Pin 7 (Z-)

Pin 8 (SE)

Pin 1 (+5V out)

Pin 9 (GND)

To use single-ended
encoders, jumper this
pin to GND (pin 9). Then
leave A-, B- and Z- not
connected.

To use single-ended
encoders, leave A-, B-
and Z- not connected.

Same circuit as
the A Channel

MASTER ENCODER Connector

15

69

Internal Schematic

681 W

681 W681 W

ISO GND

+5VDC

+5VDC +5VDC

Pin 2 (A+)

Pin 3 (A-)

Pin 4 (B+)

Pin 5 (B-)

Pin 6 (Z+)

Pin 7 (Z-)

Pin 8 (GND)

Pin 1 (+5V out)

Pin 9 (GND)

Same circuit as
the A Channel

ISO GND

Additional Correction:
When connecting a –HJ single-ended
encoder to the 6K, be sure to connect
the encoder’s white lead (channel A+)
to pin #2 (A+). The current Installation
Guide incorrectly shows the white
lead connected to pin #3 (A-).

6K Addendum (p/n 88-017657-01C) Page 11

Communications Server (COM6SRVR)

This material supersedes the information on pages 35-40 of the 6K Series Programmer’s Guide (88-017137-01A):

Programming Samples

Examples may be installed
with Motion Planner and are
located in the Motion
Planner directory
(\Motion Planner\Samples):

• Visual Basic 5.0 sample
• Visual C++ sample
• Delphi 3.0 sample
• Panel (.pnl) examples in

VBScript that you can
edit in Motion Planner’s
PanelMaker utility.

NOTE: The samples are not
installed as part of the
“typical” installation; use the
“custom” installation option.

The 6K Communications Server (COM6SRVR.EXE) is an 32-bit OLE automation server which
facilitates communications between 6K controllers and PC software applications. It is
compatible with any 32-bit software application or programming environment which can utilize
an OLE automation component, including:

• Visual Basic

• Visual C++

• Delphi

• Software packages that support Microsoft’s Component Object Model (COM):
– Wonderware’s Factory Suite 2000
– National Instruments LabVIEW

The Motion Planner installation program installs COM6SRVR.EXE in the Windows\System
(Windows 95/98) or WinNt\System32 (Windows NT) directory.

To begin communications, an application simply needs to request a connection to a 6K
controller through the Communications Server. The Communications Server manages the
actual connection to each 6K controller, and can feed information from a particular controller
to all client applications which require the information.

Although the Communications Server only makes one connection to each 6K controller, it can
feed the information from that one connection to multiple client applications. This means, for
example, that a terminal application created in Visual Basic and a terminal in Motion Planner
can be connected to the same 6K at the same time. They will both receive the same responses
coming from the controller, instead of competing for the data. It is also possible for an
application to request connections to multiple 6K units via the Communications Server. Each
connection can be either Ethernet or RS-232.

For RS-232 connections, you need to specify the PC COM port on which to connect. For
Ethernet connections, you need to specify the controller’s IP address. Each controller is set
with a default IP address (192.168.10.30). If there is an address conflict with other devices on
the network, you can change the 6K’s address with the NTADDR command (you must cycle
power to invoke the new address — refer also to the configuration procedures on page 3). The
Communications Server can handle up to two RS-232 connections and unlimited Ethernet
connections (to different IP addresses).

The syntax for requesting a connection to the Communications Server varies depending on the
programming environment being used. Below are examples in the Visual Basic, Visual C++,
and Delphi programming formats (refer also to the samples in the Motion Planner directory).
To disconnect, refer to “How to Disconnect” instructions on page 13.

COM6SRVR Application Programming Interface (API): Once the proper object variable
has been created and a connection is established, there is a standard set of methods and
properties which the client application(s) can access.

• For RS-232 methods, refer to page 14.

• For Ethernet methods and properties, refer to page 16.

Page 12 6K Addendum (p/n 88-017657-01C)

Visual Basic
Connection
Example

'create an object variable, initialize it to an
'Ethernet interface and make a connection

Dim commserver As Object
Dim ConnectReturnValue As Integer
Set commserver = CreateObject("COM6SRVR.NET")
ConnectReturnValue = commserver.Connect("192.168.10.30")

'---

'create an object variable, initialize it to a
'RS-232 interface and make a connection to PC COM1

Dim MyMachine As Object
Dim ConnectReturnValue As Integer
Set MyMachine = CreateObject("COM6SRVR.RS232")
ConnectReturnValue = MyMachine.Connect(1)

Note: When using VBScript, the syntax is identical to the example above, except that the
variable declaration should omit the “As Object” and “As Integer” keywords.

Visual C++
Connection
Example

/* create an object variable, initialize it to an
Ethernet interface and make a connection */

INet commserver;
commserver.CreateDispatch ("COM6SRVR.NET");
int ConnectReturnValue = commserver.Connect("192.168.10.30");

/*==*/

/* create an object variable, initialize it to a
RS-232 interface and make a connection to COM2 */

IRS232 MyMachine;
MyMachine.CreateDispatch ("COM6SRVR.RS232");
int ConnectReturnValue = MyMachine.Connect(2);

Delphi
Connection
Example

unit Unit1;

interface

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
 StdCtrls, ComObj;

type
 TForm1 = class(TForm)
 Button1: TButton;
 procedure FormCreate(Sender: TObject);
 procedure Button1Click(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 CommServer: Variant; { Create the object variable }
 end;

var
 Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.FormCreate(Sender: TObject);
begin
 { Initialize CommServer object to an Ethernet interface }
 CommServer := CreateOleObject('COM6SRVR.NET');
 { For RS-232, use CommServer := CreateOleObject('COM6SRVR.RS232'); }
end;

procedure TForm1.Button1Click(Sender: TObject);
begin
 { Make a connection to the 6k Controller at IP 192.168.10.30 }
 CommServer.Connect('192.168.10.30');
 { To connect via RS-232 on COM2, use CommServer.Connect(2); }
end;

end.

6K Addendum (p/n 88-017657-01C) Page 13

How to Disconnect The 6K Communications Server is designed as an “EXE” (out-of-process) server rather than a
“DLL” (in-process) server. This means that it runs independently of the client application’s
process. This feature allows the same data from the 6K Communications Server to be shared
among several clients. It also provides a more secure connection model by insulating the 6K
Communications Server from failure on any singular client.

With the use of an in-process server, the server itself runs in the client’s process. If the client
application fails or shuts down, the server will be shutdown along with the client. With the use
of an out-of-process server, the server runs independently of the client and is therefore
insulated from a failure in the client’s process. If a particular client application fails, the server
will continue to run and provide data to any other client applications requiring its service.

As an out-of-process server, the 6K Communications Server does not shutdown until all client
applications have disconnected from the server. In many cases, a proper disconnect does not
take place if an unhandled error occurs in the client application and the program exits
abnormally. This means that care must be exercised on the part of the client program to
disconnect from the server on such occasions or when its services are no longer needed.

VB and VBScript For VB/VBScript applications, an object variable is typically released when the variable loses
scope. However, it is always a good practice to explicitly release the object by setting it to
nothing.

'assuming the commserver is an object variable
'representing a 6K Communications Server connection

Set commserver = Nothing; 'free the object - disconnect from the server

C++ In C++, the same rule applies to the scope of an object variable, but again it is good
programming practice to explicitly release the object.

//assuming the commserver is an object variable
//representing a 6K Communications Server connection

commserver.ReleaseDispatch(); // release the IDispatch connection

Delphi Again, in Delphi, the same rule applies.

{ assuming the CommServer is an object variable }
{ representing a 6K Communications Server connection }

CommServer := UnAssigned; { release the connection }

Be Aware of
Background
Commands

During some operations in the Communications Server, it is necessary for the server to send
setup commands to the 6K. These commands generally affect communication port settings and
are necessary for proper communications between the server and the 6K controller.

The use of these commands may affect settings previously established in the 6K controller by a
user program, so it may be necessary to adjust the settings after certain methods in the
Communications Server are exercised. The use of these commands will also affect the
command count data available in FastStatus Ethernet property.

The Communications Server methods which invoke background commands are:

RS-232 Methods: Connect, GetFile, SendFile, and SendOS
Ethernet Methods: Connect, GetFile, and SendFile

For details on the background commands sent, refer to the description (below) for the
respective method.

Page 14 6K Addendum (p/n 88-017657-01C)

Using COM6SRVR with RS-232

RS-232 Methods
NOTE

This section covers RS-232 methods, there are no RS-232 properties for the Communications Server.

Connect (port) Description: The Connect method opens a connection to a 6K controller.
Visual Basic: object.Connect(port as Integer) As Integer

Visual C++: short object.Connect(short commport)

Delphi: Smallint_variable := Object_variable.Connect(port as Smallint)

Parameter: port (or commport) Short integer.
Represents the PC’s COM port number (1-4).

Return Type: Short Integer.
If the connection is successfully opened, the method returns a positive value
representing the number of connected clients. If the connection is unsuccessful,
then an error code is returned (see table on page 28).

Remarks: The Server can handle up to two RS-232 connections. The RS232 server
assumes 9600 Baud operation.

Background Commands: After a successful connection is made, a “PORT0:”
command is sent to the controller.

Flush Description: The Flush method removes all characters from the client’s receive buffer. This
method allows the programmer to clear the receive buffer prior to making a read.

Visual Basic: object.Flush

Visual C++: void object.Flush()

Delphi: Object_variable.FLUSH

Parameter : NONE
Return Type: NONE
Remarks: USE WITH CAUTION. This method allows the programmer to clear the

receive buffer, such that a subsequent Read call can yield a clean response.
However, data arriving in the receive buffer is asynchronous to the application
program and a thorough understanding of how the application program is
structured is necessary to use this method correctly (for example, it would not be
beneficial to Flush the buffer if only a partial response has been received).

GetFile (filename) Description: The GetFile method is used to upload programs currently stored in the controller.
Visual Basic: object.GetFile(filename as String) As Long

Visual C++: long object.GetFile(LPCTSTR lpFileName)

Delphi: Longint_variable := Object_variable.GetFile(filename as String)

Parameter: filename ... String.
Represents the name of the file to store the uploaded programs. If
the filename is an empty string, then the user will be prompted for
the filename.

Return Type: Long integer.
The method returns a positive value if the operation is successful; otherwise, it
returns an error code (see table on page 28).

Remarks: Background Commands: At the beginning of a file upload operation, these
commands are sent to the controller:

 !PORT0
 !ECHO0
 !ERRLVL0
 !EOT1,0,0
 !EOL10,0,0
 !TDIR

6K Addendum (p/n 88-017657-01C) Page 15

For each program selected for upload, a “!TPROG” command is also sent to the
controller.

After the upload process is completed, these commands are sent to the controller:
 !PORT0
 !EOT13,0,0
 !EOL13,10,0
 !ERRLVL4
 !ECHO1

Read () Description: The Read method retrieves command responses from the controller.
Visual Basic: object.Read() As String

Visual C++: object.CString Read()

Delphi: String_variable := Object_variable.Read

Parameter: NONE
Return Type: String.

The read method does not wait for incoming responses from the controller. It
returns immediately with a string containing the controller’s response at the time
of the request. If no response is available, this method will return an empty
string. The Read method response is limited to 256 characters. If the response is
longer than 256 characters, the excess characters will remain in the COM6SRVR
buffer. Multiple reads are necessary for long responses.

Remarks: You should disable Timer events in VB5 and VBScript when reading and
writing to the COM6SRVR (see Microsoft Support Online Article ID176399).

SendFile (filename) Description: The SendFile method is used to download program files to the controller.
Visual Basic: object.SendFile(filename as String) As Long

Visual C++: long object.SendFile(LPCTSTR lpFileName)

Delphi: Longint_variable := Object_variable.SendFile(filename as String)

Parameter: filename ... String.
Represents the name of the program file (containing 6K
programs/code) to be downloaded. If the filename is an empty
string, then the user will be prompted for the filename.

Return Type: Long integer.
The method returns a positive value if the operation is successful; otherwise, it
returns an error code (see table on page 28).

Remarks: To speed up downloads, the SendFile method strips comments from the
downloaded 6K code. That is, all text between the comment delimiter (semi-
colon) and the command delimiter (carriage return or line feed) is removed.

NOTE: The SendFile method should be called when motion is not in progress
and programs are not running.

Background Commands: At the beginning of a file download operation, these
commands are sent to the controller:

 !PORT0
 !ECHO0
 !ERRLVL0
 !EOT1,0,0
 !EOL10,0,0
 !TDIR

After the download process is completed, these commands are sent to the
controller:

 !PORT0
 !EOT13,0,0
 !EOL13,10,0
 !ERRLVL4
 !ECHO1

NOTE: If the download process is canceled, an “END” command is sent to the
controller.

Page 16 6K Addendum (p/n 88-017657-01C)

SendOS (filename) Description: The SendOS method downloads the soft operating system to a 6K controller.
Visual Basic: object.SendOS(filename as String) As Boolean

Visual C++: BOOL object.SendOS(LPCTSTR lpFileName)

Delphi: Boolean_variable := Object_variable.SendOS(filename as String)

Parameter: filename ... String. Represents the name of soft operating system file. If
filename is an empty string then the user will be prompted for the
operating system file name.

Return Type: Boolean. (This method returns a Boolean value.)
The method returns a TRUE value if the operation is successful; otherwise, a
FALSE value is returned.

Remarks: After downloading a new operating system, the appropriate NTFEN command
must be sent to the controller (see page 5) — this applies only if you will be
using Ethernet communication.

Background Commands: The operating system download process, COM6SRVR
sends several setup commands to the 6K, followed by a reset command.
NOTE – The download process uses a baud rate of 38400. This allows for fast
download times. After the download process is completed, the 6K’s previous
baud rate is reinstated. The Communications server ALWAYS uses 9600 baud
for normal communications.

Write (cmd) Description: The Write method is used to send commands to the controller.
Visual Basic: object.Write(cmd as String) As Long

Visual C++: long object.Write(LPCTSTR cmd)

Delphi: Longint_variable := Object_variable.Write(cmd as String)

Parameter: cmd.............. String. A string of commands to be sent. Multiple commands can
be sent, but each command should be separated with a valid 6K
command delimiter (colon, carriage return, or line feed). The
command string should be limited to 256 characters or less. Larger
command strings may cause an overflow in the 6K’s command
buffer.

Return Type: Long integer.
This method returns a positive value corresponding to the number of bytes sent,
or a negative error code (see table on page 28).

Remarks: You should disable Timer events in VB5 and VBScript when reading and
writing to the COM6SRVR (see Microsoft Support Online Article ID176399).

Using COM6SRVR with Ethernet

Ethernet Methods

Connect (netaddress) Description: The Connect method opens a connection to a 6K controller
Visual Basic: object.Connect(netaddress as String) As Integer

Visual C++: short object.Connect(LPCTSTR netaddress)

Delphi: Smallint_variable := Object_variable.Connect(netaddress as String)

Parameter: netaddress.......String. Represents the target controller’s IP address.
Return Type: Short Integer.

If the connection is successfully opened, the method returns a positive value
representing the number of connected clients. If the connection is unsuccessful,
then an error code is returned (see table on page 28).

Remarks: The Server can handle unlimited Ethernet connections (to different IP
addresses). The 6K takes up to one minute for an Ethernet connection to truly
expire and be available for a new connection.

6K Addendum (p/n 88-017657-01C) Page 17

Background Commands: After a successful connection is made, the following
commands are sent to the controller:

 !PORT0
 !ERRLVL4
 !EOT13,0,0
 !EOL13,10,0

ECHO mode is initially disabled (ECHO0) by the 6K during Ethernet
communications.

Flush Description: The Flush method removes all characters from the client’s receive buffer. This
method allows the programmer to clear the receive buffer prior to making a read.

Visual Basic: object.Flush

Visual C++: void object.Flush()

Delphi: Object_variable.FLUSH

Parameter : NONE
Return Type: NONE
Remarks: Use with caution. This method allows the programmer to clear the receive buffer,

such that a subsequent Read call can yield a clean response. However, data
arriving in the receive buffer is asynchronous to the application program and a
thorough understanding of how the application program is structured is necessary
to use this method correctly (for example, it would not be beneficial to Flush the
buffer if only a partial response has been received).

GetFile (filename) Description: The GetFile method is used to upload programs currently stored in the controller.
Visual Basic: object.GetFile(filename as String) As Long

Visual C++: long object.GetFile(LPCTSTR filename)

Delphi: Longint_variable := Object_variable.GetFile(filename as String)

Parameter: filename ... String.
Represents the name of the file to store the uploaded programs. If
the filename is an empty string, then the user will be prompted for
the filename.

Return Type: Long integer.
The method returns a positive value if the operation is successful; otherwise, it
returns an error code (see table on page 28).

Remarks: Background Commands: At the beginning of a file upload operation, these
commands are sent to the controller:

 !PORT0
 !ERRLVL0
 !EOT1,0,0
 !EOL10,0,0
 !ECHO0
 !TDIR

For each program selected for upload, a “!TPROG” command is also sent to the
controller.

After the upload process is completed, these commands are sent to the controller:
 !ERRLVL4
 !EOT13,0,0
 !EOL13,10,0

IsWatchdogTimedOut Description: The IsWatchdogTimedOut method interrogates the current status of the Ethernet
Watchdog. The Ethernet Watchdog is a handshake established between the
COM6SRVR and the 6K to monitor that the Ethernet connection is still active
and “connected”.

Visual Basic: object.IsWatchdogTimedOut As Boolean

Visual C++: BOOL IsWatchdogTimedOut()

Delphi: Boolean_variable := Object_variable.IsWatchdogTimedOut

Parameter: None
Return Type: Boolean.

A True indicates that the Ethernet connection has been lost (possible causes: the
6K was reset, or the Ethernet connection was broken). The property is cleared

Page 18 6K Addendum (p/n 88-017657-01C)

when a new Ethernet connection is established.
Remarks: For further information, refer to the SetWatchdog method on page 20.

Read () Description: The Read method retrieves command responses from the controller.
Visual Basic: object.Read() As String

Visual C++: CString object.Read()

Delphi: String_variable := Object_variable.Read

Parameter: NONE
Return Type: String.

The read method does not wait for incoming responses from the controller. It
returns immediately with a string containing the controller’s response at the time
of the request. If no response is available, this method returns an empty string.
The Read method response is limited to 256 characters. If the response is longer
than 256 characters, the excess characters will remain in the COM6SRVR
buffer. Multiple reads are necessary for long responses.

Remarks: You should disable Timer events in VB5 and VBScript when reading and
writing to the COM6SRVR (see Microsoft Support Online Article ID176399).

RequestFastStatusUpdate Description: The RequestFastStatusUpdate method allows the COM6SRVR to request a fast
status update as needed, without having to enable the fast status “Streaming
Mode” (FSEnabled) or set an update interval (FSUpdateRate).

Visual Basic: object.RequestFastStatusUpdate As Integer

Visual C++: short object.RequestFastStatusUpdate

Parameter: NONE
Return Type: Short integer. If the RequestFastStatusUpdate call is successful the method

returns the number of bytes sent. If the call is unsuccessful, the method returns a
negative error code (see error code table on page 28).

Remarks: This method is one of two “On Demand” fast status update options. The other
option is for the 6K to execute the NTSFS command (see page 41). Using an On
Demand update technique is more efficient for interactive PC applications than
the Streaming Mode, and reduces network traffic. For an overview of using the
fast status, refer to page 31.

SendFile (filename) Description: The SendFile method is used to download program files to the controller.
Visual Basic: object.SendFile(filename as String) As Long

Visual C++: long object.SendFile(LPCTSTR filename)

Delphi: Longint_variable := Object_variable.SendFile(filename as String)

Parameter: filename ... String. Represents the name of the program file (containing 6K
programs/code) to be downloaded. If the filename is an empty
string, then the user will be prompted for the filename.

Return Type: Long integer. The method returns a positive value if the operation is
successful; otherwise, it returns an error code (see table on page 28).

Remarks: To speed up downloads, the SendFile method strips comments from the
downloaded 6K code. That is, all text between the comment delimiter (semi-
colon) and the command delimiter (carriage return or line feed) is removed.

Background Commands: At the beginning of a file download operation, these
commands are sent to the controller:

 !PORT0
 !ERRLVL0

After the download process is completed, these commands are sent to the
controller:

 !PORT0
 !ERRLVL4
 !EOT13,0,0
 !EOL13,10,0

NOTE: If the download process is canceled, an “END” command is sent to the
controller.

6K Addendum (p/n 88-017657-01C) Page 19

SendVariable
(nVariableMask, vaValue)

Description: The SendVariable method sends one variable from the variable packet to the 6K
controller.

Visual Basic: object.SendVariable(nVariableMask As Long, vaValue As
Variant) As Integer

Visual C++: short object.SendVariable(long nVariableMask, const VARIANT
FAR& vaValue)

Parameter: nVariableMaskLong integer.
Specifies the one variable to be sent. Constants are defined
for the mask bits (mask bits for Visual Basic and Visual
C++ are provided below). Only one bit can be set in the
nVariableMask.

vaValueVariant.
Specifies the value of the variable to be sent. The actual
variable being sent is specified by the nVariableMask.
Because the SendVariable Method can be used to send
integer, real or binary variables, the data type can either be
a long integer or a double floating point value. Using a
Variant parameter allows the flexibility of sending any
integer type, while allowing the COM6SRVR to cast the
Variant into the appropriate data type.

Return Type: Short integer.
If the SendVariable call is successful, the method returns the number of bytes
sent. If the call is unsuccessful, the method returns a negative error code (see
error code table on page 28). Errors codes are returned if more than one bit is set
in the nVariableMask or if the Variant data type is incompatible. Error codes are
also returned if there are Ethernet communications errors.

Remarks: Refer to page 33 for an overview of using Send Variables packets.
The data range of real variables in the 6K and the number of significant figures
available in a double data type in the PC programming language may cause some
rounding errors. The 6K can store data with greater significance, but with a
smaller range of values (refer to the VAR command in the 6K Series Command
Reference and to your PC programming language reference).

Variable Packet Mask Bits for Visual Basic Variable Packet Mask Bits for Visual C++
Public Const VARI1 As Long = 1
Public Const VARI2 As Long = 2
Public Const VARI3 As Long = 4
Public Const VARI4 As Long = 8
Public Const VARI5 As Long = 16
Public Const VARI6 As Long = 32
Public Const VARI7 As Long = 64
Public Const VARI8 As Long = 128
Public Const VARI9 As Long = 256
Public Const VARI10 As Long = 512
Public Const VARI11 As Long = 1024
Public Const VARI12 As Long = 2048

Public Const VAR1 As Long = 4096
Public Const VAR2 As Long = 8192
Public Const VAR3 As Long = 16384
Public Const VAR4 As Long = 32768
Public Const VAR5 As Long = 65536
Public Const VAR6 As Long = 131072
Public Const VAR7 As Long = 262144
Public Const VAR8 As Long = 524288
Public Const VAR9 As Long = 1048576
Public Const VAR10 As Long = 2097152
Public Const VAR11 As Long = 4194304
Public Const VAR12 As Long = 8388608

Public Const VARB1 As Long = 16777216
Public Const VARB2 As Long = 33554432
Public Const VARB3 As Long = 67108864
Public Const VARB4 As Long = 134217728
Public Const VARB5 As Long = 268435456
Public Const VARB6 As Long = 536870912
Public Const VARB7 As Long = 1073741824
Public Const VARB8 As Long = &H80000000

#define VARI1 0x00000001
#define VARI2 0x00000002
#define VARI3 0x00000004
#define VARI4 0x00000008
#define VARI5 0x00000010
#define VARI6 0x00000020
#define VARI7 0x00000040
#define VARI8 0x00000080
#define VARI9 0x00000100
#define VARI10 0x00000200
#define VARI11 0x00000400
#define VARI12 0x00000800

#define VAR1 0x00001000
#define VAR2 0x00002000
#define VAR3 0x00004000
#define VAR4 0x00008000
#define VAR5 0x00010000
#define VAR6 0x00020000
#define VAR7 0x00040000
#define VAR8 0x00080000
#define VAR9 0x00100000
#define VAR10 0x00200000
#define VAR11 0x00400000
#define VAR12 0x00800000

#define VARB1 0x01000000
#define VARB2 0x02000000
#define VARB3 0x04000000
#define VARB4 0x08000000
#define VARB5 0x10000000
#define VARB6 0x20000000
#define VARB7 0x40000000
#define VARB8 0x80000000

Page 20 6K Addendum (p/n 88-017657-01C)

SendVariablePacket
(vaPacket)

Description: The SendVariablePacket method sends a packet of variables to the 6K
controller. A complete packet of variables (comprising 6K integer variables 1-
12, real variables 1-12 and binary variables 1-8) are always sent. (Refer to the
Variable Structures listed below for VB and VC++.) Also included in the packet
is a mask, which allows specific variables to be write-protected or over-written.

Visual Basic: object.SendVariablePacket(vaPacket As Variant) As Integer

Visual C++: short object.SendVariablePacket (const VARIANT FAR& vaPacket)

Parameter: vaPacket........ Variant.
An array of bytes representing the SendVariable packet. The array of bytes
comprise: mask bits, reserved elements and bytes of data for the variables.
To send a variable packet:

1. Create a structure (TypeDef) and populate the structure with the mask
and the variable values.

2. Create an array of bytes from the structure (VB uses Windows API
function CopyMemory, Visual C++ uses SAFEARRAYS).

3. Pass the array of bytes as a Variant to the SendVariablePacket
method.

Refer also to the examples in the SimpleOnePlus sample VB application.
Return Type: Short integer.

If the SendVariablePacket call is successful the method returns the number of
bytes sent. If the call is unsuccessful, the method returns a negative error code
(see error code table on page 28). Errors codes are returned if the variant data
type is incompatible or if there are Ethernet communication errors.

Remarks: Refer to page 33 for an overview of using Send Variables packets.
A list of mask bits for Visual Basic and Visual C++ is provided in the
SendVariables method description above.

The data range of real variables in the 6K and the number of significant figures
available in a double data type in the PC programming language may cause some
rounding errors. The 6K can store data with greater significance, but with a
smaller range of values (refer to the VAR command in the 6K Series Command
Reference and to your PC programming language reference).

Variable Structure for Visual Basic Variable Structure for Visual C++
Type SendVariableStructure
 Mask As Long
 Reserved1 As Long
 Reserved2 As Long
 Reserved3 As Long
 VarI(1 To 12) As Long
 VarR(1 To 12) As Double
 VarB(1 To 8) As Long
End Type

typedef struct VARIABLEPACKETStruct {
 int nVariableMask;
 int nReserved1;
 int nReserved2;
 int nReserved3;
 int VARI[12];
 double VAR[12];
 int VARB[8];
} VARIABLEPACKET, *LPVARIABLEPACKET;

SetWatchdog
(wTimeout, wTicker)

Description: The SetWatchdog method enables Ethernet watchdog hand-shaking between the
COM6SRVR and the 6K Controller.

Visual Basic: object.SetWatchdog(wTimeout as Integer, wTicker as Integer) as Integer

Visual C++: short SetWatchdog(short wTimeout, short wTicker)

Delphi: Smallint_variable := Object_variable.SetWatchdog(wTimeout as Smallint,
wTicker as Smallint)

Parameters: wTimeout Timeout period in seconds (see guidelines below)
wTicker Number of “heartbeat” packets to send during the timeout period

Return Type: Short integer.
Returns zero if successful, or a negative error value (usually –11, which indicates
that an invalid configuration was specified).

Remarks: The Ethernet watchdog allows the COM6SRVR and 6K Controller to gracefully
recover when communication between the 6K and COM6SRVR is lost. Such
situations might arise from the loss of power to the 6K or to the PC while an
Ethernet connection was active. By enabling the Watchdog, a heartbeat packet is
sent periodically by the COM6SRVR. The 6K detects the heartbeat and echoes it
back to the COM6SRVR. If the COM6SRVR does not detect the echoed heartbeat

6K Addendum (p/n 88-017657-01C) Page 21

(within the constraints set by the wTimeout and wTicker parameters), the
watchdog is considered timed out. If the 6K does not receive the heartbeat (within
the same wTimeout and wTicker constraints), the 6K considers the watchdog
timed out.

Loss or delay of a single echoed heartbeat could happen quite frequently on a busy
network connection. Therefore, we provide a method whereby a number of re-tries
are attempted over a specific timeout period. If all re-tries fail within the timeout
period, then the watchdog is considered to have timed out. This functionality is
provided by the wTimeout and wTicker parameters. The constraints for these
parameters are as follows:

• To enable the watchdog, set wTimeout > 0 > wTicker.
• To disable the watchdog, set wTimeout = 0 and set wTicker = 0.

• The wTimeout/wTicker ratio must be ≤ 65.

RECOMMENDATION: Set wTimeout = 100 and wTicker = 5, which provides a
heartbeat once every twenty seconds (100 seconds / 5 tries = 20 seconds/attempt). If
none of the 5 heartbeats are acknowledged in 100 seconds, the watchdog times out.

WHEN A WATCHDOG TIMEOUT OCCURS:

• In the 6K: When the 6K detects a watchdog timeout, it attempts to send an
alarm packet to the COM6SRVR (AlarmStatus bit #22 – see page 22). It then
closes the Ethernet connection and reports “disconnected” in the TNT report.
If the user has enabled error-checking bit #22 (ERROR.22-1), the 6K will
execute a GOSUB branch to the ERRORP program. Within the ERRORP
program, the watchdog timeout can be cleared by disabling ERROR bit #22
(ERROR.22-0).

• In the COM6SRVR: When the COM6SRVR detects a watchdog timeout, the
IsWatchdogTimedOut method (see page 17) returns TRUE. (If the
COM6SRVR receives the alarm packet from the 6K, it will also display an alert
dialog to the user.) A client application can poll the IsWatchdogTimedOut.
When a timeout is detected by the COM6SRVR, the Client application should
“disconnect” the COM6SRVR (if using VB, set COM6SRVR object to
Nothing. If using VC++, use ReleaseDispatch). After the COM6SRVR has
been disconnected, creating a new Com6srvr object and “connecting” Ethernet
will clear the watchdog timeouts. All client applications for that particular 6K
Ethernet connection should be disconnected.

Write (cmd) Description: The Write method is used to send commands to the controller.
Visual Basic: object.Write(cmd as String) As Integer

Visual C++: short object.Write(LPCTSTR cmd)

Delphi: Smallint_variable := Object_variable.Write(cmd as String)

Parameter: cmd.............. String. A string of commands to be sent. Multiple commands can
be sent, but each command should be separated with a valid 6K command
delimiter (colon, carriage return, or line feed). The command string should be
limited to 256 characters or less. Larger command strings may cause an
overflow in the 6K’s command buffer.

Return Type: Short integer.
This method returns a positive value corresponding to the number of bytes sent,
or a negative error code (see table on page 28).

Remarks: You should disable Timer events in VB5 and VBScript when reading and
writing to the COM6SRVR (see Microsoft Support Online Article ID176399).

Page 22 6K Addendum (p/n 88-017657-01C)

Ethernet Properties Bit Status Convention

When retrieving bit-oriented properties (e.g., AxisStatus, ErrorStatus, Limits, SystemStatus, etc.) note
that the convention in the 6K programming language differs from the convention used for C and
Assembly programming languages. Compumotor’s 6K convention is to refer to the bits within a 32 bit
long integer as bits 1 through 32 (left to right). The C and Assembler Programmer's convention refers to
these as bits 0 through 31 (right to left). When masking these bits, you should be aware of this subtle
difference when referring to 6K documentation.

AlarmStatus (bit) Description: The AlarmStatus property returns the state of the controller’s alarm status.
Visual Basic: object.AlarmStatus(bit As Integer) as Long

Visual C++: long object.GetAlarmStatus(short bit)

Delphi: Longint_variable := Object_variable.AlarmStatus(bit as Smallint)

Parameter: bit.............. Short Integer.
Specifies the status bit of the alarm status to return. Range is 0-32, where
values in the 1-32 range represent the alarm bits as described in the table
below (refer also to the INTHW command). Specifying a bit value of 0 returns
the entire 32-bit alarm status as a long value; otherwise, a value of 1 or 0 is
returned to indicate the state of any single bit. When any single bit status is
retrieved using the AlarmStatus property, that bit status is automatically
cleared by the Communications Server. If a bit value of 0 is used then all
alarm status bits are cleared.

Return Type: Long Integer.
Remarks: When the 6K sends an alarm packet to the COM6SRVR, the FastStatus structure

(see page 24) is automatically updated, regardless of state of FSEnabled.

Bit # Function **

 1 Software (forced) Alarm #1
 2 Software (forced) Alarm #2
 3 Software (forced) Alarm #3
 4 Software (forced) Alarm #4
 5 Software (forced) Alarm #5
 6 Software (forced) Alarm #6
 7 Software (forced) Alarm #7
 8 Software (forced) Alarm #8
 9 Software (forced) Alarm #9
10 Software (forced) Alarm #10
11 Software (forced) Alarm #11
12 Software (forced) Alarm #12
13 Command Buffer Full
14 ENABLE input Activated
15 Program Complete
16 Drive Fault on any Axis

 Bit # Function

17 Reserved
18 Reserved
19 Limit Hit - hard or soft limit, on any axis
20 Stall Detected (stepper)

or Position Error (servo) on any axis
21 Timer (TIMINT)
22 Ethernet fail (RESET or ER.22 occurred)

(also invokes an error dialog)
23 Input - any of the inputs defined by

INFNCi-I or LIMFNCi-I
24 Command Error
25 Motion Complete on Axis 1
26 Motion Complete on Axis 2
27 Motion Complete on Axis 3
28 Motion Complete on Axis 4
29 Motion Complete on Axis 5
30 Motion Complete on Axis 6
31 Motion Complete on Axis 7
32 Motion Complete on Axis 8

** Bits 1-12: software alarms are forced with the INTSW command.

AnalogInput (channel) Description: The AnalogInput property returns the value (counts) of the specified analog input.
Visual Basic: object.AnalogInput(channel As Integer) As Long

Visual C++: short object.GetAnalogInput(short channel)

Delphi: Smallint_variable := Object_variable.AnalogInput(channel as Smallint)

Parameter: channel Short Integer.
Specifies the analog input channel (channel 1 or 2) value to return.
This property uses only the first two analog inputs detected on an
I/O brick connected to the 6K, regardless of the ANIEN (analog
input enable) setting.

Return Type: Short integer.
The method returns the specified analog input value in counts.

Remarks: Requires fast status to be enabled (see FSEnabled property – page 25).

6K Addendum (p/n 88-017657-01C) Page 23

AxisStatus (axis) Description: The AxisStatus property retrieves the current axis status for the specified axis.
Visual Basic: object.AxisStatus(axis As Integer) As Long

Visual C++: long object.GetAxisStatus(short axis)

Delphi: Longint_variable := Object_variable.AxisStatus(axis as Smallint)

Parameter: axis Short Integer.
Specifies the axis about which the status pertains. The range for
this value is 1-8.

Return Type: Long Integer.
The long integer value represents the current axis status for the specified axis.
Refer to the TAS command description for a list of the status elements.

Remarks: Requires fast status to be enabled (see FSEnabled property – page 25).

CommandCount Description: Use the CommandCount property to ascertain how many 6K commands have
been executed (outside of defined programs) since the 6K controller was
powered up.

Visual Basic: object.CommandCount As Long

Visual C++: long object.GetCommandCount()

Delphi: Longint_variable := Object_variable.CommandCount

Parameter: NONE
Return Type: Long Integer.

The value represents the number of 6K commands which have been executed
outside of defined programs, since the 6K controller was powered up.

Remarks: Read Only.
This property allows users to track when commands being sent to the controller
(via the communications ports) have been executed. The value is reset to zero
each time power is cycled on the 6K. The return value is affected by any
background commands sent in conjunction with the Connect, GetFile, and
SendFile methods.
Requires fast status to be enabled (see FSEnabled property – page 25).

Counter Description: The Counter property returns the current Time Frame Counter value.
Visual Basic: object.Counter As Integer

Visual C++: short object.GetCounter()

Delphi: Smallint_variable := Object_variable.Counter

Parameter: NONE
Return Type: Short integer.

The values represents the current Time Frame Counter value.
Remarks: Read Only.

The Time Frame Counter is a free-running timer in the controller. The Counter is
updated at the System Update Rate (2 milliseconds).
Requires fast status to be enabled (see FSEnabled property – page 25).

EncoderPos (axis) Description: The EncoderPos property returns the current encoder position (TPE) in counts
for the specified axis.

Visual Basic: object.EncoderPos(axis As Integer) As Long

Visual C++: long object.GetEncoderPos(short axis)

Delphi: Longint_variable := Object_variable.EncoderPos(axis)

Parameter: axis Short Integer.
Specifies the axis number of the encoder. The range for this value
is 1-8.

Return Type: Long integer.
The value represents the current encoder position (TPE) in counts for the
specified axis.

Remarks: Read Only.
Requires fast status to be enabled (see FSEnabled property – page 25).

Page 24 6K Addendum (p/n 88-017657-01C)

ErrorStatus Description: The ErrorStatus property returns the current error status (TER) of task 0 only.
Visual Basic: object.ErrorStatus As Long

Visual C++: long object.GetErrorStatus()

Delphi: Longint_variable := Object_variable.ErrorStatus

Parameter: NONE
Return Type: Long Integer.

The values represents the current error status (TER) of task 0.
Remarks: Requires fast status to be enabled (see FSEnabled property – page 25).

FastStatus Description: The FastStatus property returns the entire FastStatus data structure.
Visual Basic: object.FastStatus As Variant

Visual C++: VARIANT object.GetFastStatus()

Delphi: Variant_variable := Object_variable.FastStatus

Parameter: NONE
Return Type: Variant.

The variant represents the value of the entire FastStatus data structure.
Remarks: This property allows for faster, more efficient retrieval of the FastStatus

information if multiple FastStatus items need to be checked at once. The variant
is essentially a byte array which can be mapped into a FastStatus structure (see
table below for FastStatus structure). The Fast Status structure includes ten
integer (VARI) variables and ten binary (VARB) variables that you can use to
customize the Fast Status content (see Customizing Fast Status on page 32).

Refer to the VB5 sample application SimpleOne in the subroutine
cmdGetData_Click() for details of how to convert the byte array data into a
Fast Status structure (User Defined Type). Refer to the VC5 sample application
VC_Ethernet in the subroutine MakeFastStatus for details on how to convert
from a byte array into a Fast Status TypeDef. VBScript does not allow use of
structures – use the properties Inputs() and MotorPos().

Requires fast status to be enabled (see FSEnabled property – page 25).

NOTE: When the object is first created, the FastStatus data will read zeroes.
There after, it will report the most recently updated values. When FSEnabled is
set to FALSE, the FastStatus structure will retain the values from the last update.
When the 6K sends an alarm packet to the COM6SRVR, the FastStatus structure
is automatically updated, regardless of state of FSEnabled.

Fast Status — Packet Data Definition (280 bytes total)

Type Description Bytes

WORD wUpdateID Unique update ID for synch channel 2
WORD wCounter Time Frame Counter 2
DWORD dwMotorPos[8] Commanded Position (TPC) 32
DWORD dwEncPos[8] Encoder Position (TPE) 32
DWORD dwMotorVel[8] Commanded Velocity (TVEL) 32
DWORD dwAxisStatus[8] Axis Status (TAS) 32
DWORD dwSystemStatus System Status (TSS) 4
DWORD dwErrorStatus Error Status (TER) 4
DWORD dwUserStatus User Status (TUS) 4
DWORD dwTimer Timer (TTIM) 4
DWORD dwLimits Limit Status (TLIM) 4
DWORD dwInputs[4] Input Status (TIN) 16
DWORD dwOutputs[4] Output Status (TOUT) 16
DWORD dwTriggers Trigger Status (TTRIG) 4
WORD wAnalogIn[2] Analog Input Value (TANI - in counts) 4
DWORD dwVarb[10] Binary Variable Values (VARB1 through VARB10) 40
DWORD dwVari[10] Integer Variable Values (VARI1 through VARI10) 40
DWORD dwIPAddress IP Address (NTADDR) 4
DWORD dwCmdCount Command Count 4

6K Addendum (p/n 88-017657-01C) Page 25

FSEnabled Description: The FSEnabled property sets or returns the state of FastStatus polling.
Visual Basic: object.FSEnabled As Boolean

Visual C++: Read: BOOL object.GetFSEnabled()
Write: void object.SetFSEnabled(BOOL state)

Delphi: Read: Boolean_variable := Object_variable.FSEnabled
Write: Object_variable.FSEnabled := (state as Boolean)

Parameter: Boolean (read/write property).
Return Type: Boolean (read/write property).
Remarks: The table above lists the items in the FastStatus structure. If the FSEnabled

property is set to TRUE, then FastStatus information is automatically retrieved
from the controller on a continual basis. BE AWARE that enabling automatic
FastStatus polling provides fresh data from the controller on a continual basis,
but this will impair the controller’s processing time and create a high volume of
traffic over the Ethernet network interface. If you intend to enable automatic
FastStatus polling, be sure to first set the FSUpdateRate property accordingly. If
the FSEnabled property is set to FALSE, automatic FastStatus polling is turned
off (but the FastStatus structure will retain the values from the last update).

FSUpdateRate Description: The FSUpdateRate property is used to set the millisecond interval on which the
controller automatically updates its FastStatus information.

Visual Basic: object.FSUpdateRate As Integer

Visual C++: Read: short object.GetFSUpdateRate()
Write: void object.SetFSUpdateRate(short rate)

Delphi: Read: Smallint_variable := Object_variable.FSUpdateRate
Write: Object_variable.FSUpdateRate := (rate as Smallint)

Parameter: Short integer (read/write property).
Return Type: Short integer (read/write property).
Remarks: This property should be set before the FSEnabled property is set to TRUE.

Setting a larger value for this property means that information will be updated
less frequently, thereby consuming less of the controller’s processing resources.
A small value will provide for more frequent updates, but consume more
processing time. Valid values for this property are from 10 to 65536
milliseconds. This is a read/write property.

Visual Basic Users: COM6SRVR interprets the FSUpdateRate as an unsigned
16-bit integer value. Visual Basic does not support use of unsigned data types.
Therefore, you have to pass a signed 16-bit integer and allow the COM6SRVR
to interpret it as unsigned. Thus, to allow slower update intervals than 32767 ms,
a VB programmer would pass a negative value (see examples below):

Value passed is –1result is 65535 ms/update
Value passed is –32768result is +32768 ms/update
Value passed is –30000result is +35536 ms/update
Value passed is –25536result is +40000 ms/update
Value passed is +32767result is +32767 ms/update
Value passed is +10..............result is +10 ms/update

Page 26 6K Addendum (p/n 88-017657-01C)

Inputs (brick) Description: Use the Inputs property to check the current state of the inputs (TIN) on a
specific brick.

Visual Basic: object.Inputs(brick As Integer) As Long

Visual C++: long object.GetInputs(short brick)

Delphi: Longint_variable := Object_variable.Inputs(brick as Smallint)

Parameter: brick Short Integer.
Represents the number of the brick where the inputs reside. Range
is 0-3. Brick 0 represents the onboard inputs. Bricks 1-3 represent
expansion I/O bricks 1-3.

Return Type: Long Integer.
The value represents the current state of the inputs (TIN) for the specified brick.

Remarks: Read Only.
Requires fast status to be enabled (see FSEnabled property – page 25).

IPAddress Description: The IPAddress property returns the controller’s IP Address (NTADDR).
Visual Basic: object.IPAddress As Long

Visual C++: long object.GetIPAddress()

Delphi: Longint_variable := Object_variable.IPAddress

Parameter: NONE
Return Type: Long Integer.

The value represents the controller’s IP Address (NTADDR).
Remarks: Read Only.

Requires fast status to be enabled (see FSEnabled property – page 25).

Limits Description: The Limits property returns the current limit status (TLIM).
Visual Basic: object.Limits As Long

Visual C++: long object.GetLimits()

Delphi: Longint_variable := Object_variable.Limits

Parameter: NONE
Return Type: Long Integer.

The value represents the current limit status (TLIM).
Remarks: Read Only.

Requires fast status to be enabled (see FSEnabled property – page 25).

MotorPos (axis) Description: The MotorPos property returns the current commanded position (TPC) for the
specified axis.

Visual Basic: object.MotorPos(axis As Integer) As Long

Visual C++: long object.GetMotorPos(short axis)

Delphi: Longint_variable := Object_variable.MotorPos(axis as Smallint)

Parameter: axis Short Integer. Specifies the axis number (range is 1-8).
Return Type: Long Integer.

The value represents the current commanded position (TPC) in counts for the
specified axis.

Remarks: Read Only.
Requires fast status to be enabled (see FSEnabled property – page 25).

6K Addendum (p/n 88-017657-01C) Page 27

MotorVel (axis) Description: The MotorVel property returns the current commanded motor velocity (TVEL)
for the specified axis.

Visual Basic: object.MotorVel(axis As Integer) As Long

Visual C++: long object.GetMotorVel(short axis)

Delphi: Longint_variable := Object_variable.MotorVel(axis as Smallint)

Parameter: axis Short Integer.
Specifies the axis number. The range for this value is 1-8.

Return Type: Long Integer.
The value represents the current commanded velocity (TVEL) in counts for the
specified axis.

Remarks: Read Only.
Requires fast status to be enabled (see FSEnabled property – page 25).

Outputs (brick) Description: The Outputs property returns the state of the outputs (TOUT) on the specified
brick.

Visual Basic: object.Outputs(brick As Integer) As Long

Visual C++: long object.GetOutputs(short brick)

Delphi: Longint_variable := Object_variable.Outputs(brick as Smallint)

Parameter: brick Short Integer. Represents the number of the brick where the
outputs reside. Range is 0-3. Brick 0 represents the onboard
outputs. Bricks 1-3 represent expansion I/O bricks 1-3.

Return Type: Long Integer.
The value represents the state of the outputs (TOUT) on the specified brick.

Remarks: Read Only.
Requires fast status to be enabled (see FSEnabled property – page 25).

SystemStatus Description: The SystemStatus property returns the system status (TSS) for task 0 only.
Visual Basic: object.SystemStatus As Long

Visual C++: long object.GetSystemStatus()

Delphi: Longint_variable := Object_variable.SystemStatus

Parameter: NONE
Return Type: Read Only.

Long Integer.
The value represents the system status (TSS) for task 0 only.

Timer Description: The Timer property returns the current Timer value (TTIM) for task 0 only.
Visual Basic: object.Timer As Long

Visual C++: long object.GetTimer()

Delphi: Longint_variable := Object_variable.Timer

Parameter: NONE
Return Type: Long integer.

Represents the current Timer value (TTIM) for task 0 only.
Remarks: Read Only.

Requires fast status to be enabled (see FSEnabled property – page 25).

Triggers Description: The Triggers property returns the Trigger Interrupt Status (TTRIG).
Visual Basic: object.Triggers As Long

Visual C++: long object.GetTriggers()

Delphi: Longint_variable := Object_variable.Triggers

Parameter: NONE
Return Type: Long integer.

The value represents the current state of the Trigger Interrupts (TTRIG).
Remarks: Read Only.

Requires fast status to be enabled (see FSEnabled property – page 25).

Page 28 6K Addendum (p/n 88-017657-01C)

UserStatus Description: The UserStatus property returns the current state of the user status register (TUS).
Visual Basic: object.UserStatus As Long

Visual C++: long object.GetUserStatus()

Delphi: Longint_variable := Object_variable.UserStatus

Parameter: NONE
Return Type: Long integer.

The value represents the current state of the user status register (TUS).
Remarks: Read Only.

Requires fast status to be enabled (see FSEnabled property – page 25).

VarB (varnum) Description: The VarB property returns the value of the specified binary variable (VARB).
Visual Basic: object.VarB(varnum As Integer) As Long

Visual C++: long object.GetVarB(short varnum)

Delphi: Longint_variable := Object_variable.VarB(varnum as Smallint)

Parameter: varnum Short Integer. Represents number of the binary variable
(VARBvarnum). Range is 1-10.

Return Type: Long integer.
The value represents the value of the specified binary variable (VARB).

Remarks: Read Only.
Requires fast status to be enabled (see FSEnabled property – page 25). Refer to
page 32 for information on using VARB variables to customize the Fast Status
structure.

VarI (varnum) Description: The VarI property returns the value of the specified integer variable (VARI).
Visual Basic: object.VarI(varnum As Integer) As Long

Visual C++: long object.GetVarI(short varnum)

Delphi: Longint_variable := Object_variable.VarI(varnum as Smallint)

Parameter: varnum Short Integer. Represents number of the integer variable
(VARIvarnum). Range is 1-10.

Return Type: Long Integer.
The value represents the value of the specified integer variable (VARI).

Remarks: Read Only.
Requires fast status to be enabled (see FSEnabled property – page 25). See page
32 for information on using VARI variables to customize the Fast Status
structure.

COM6SRVR Error Codes

 Error Code Description

-1 Bad Ethernet connection due to socket error
-2 Ethernet connection was shut down
-3 Connection attempt failed
-4 Maximum number of Ethernet connections exceeded
-5 Ethernet or RS232 connection not yet established
-6 No filename specified
-7 Unable to locate specified file
-8 Unable to open specified file
-9 Unable to ping Ethernet connection
-10 Unable to create Ethernet socket
-11 Invalid parameter passed to function
-12 Unable to create or connect Ethernet watchdog socket
-13 Unable to create or connect Ethernet fast status socket
-14 Unable to create or connect Ethernet alarm socket
-15 Unable to create or connect Ethernet command socket
-16 Unable to create client ring buffer for Ethernet command socket
-17 SetWatchdog returns this error when Windows runs out of timers.

6K Addendum (p/n 88-017657-01C) Page 29

COM6SRVR Programming Notes

Calls to
COM6SRVR

All calls to the COM6SRVR are blocking calls. Programming control does not return to the
client program until the requested operation has been completed in the COM6SRVR. During the
call, the Windows operating system continues to process other system calls and timer messages.

Be careful to avoid multiple, simultaneous calls to the server from within the same process.
This situation typically arises if there are multiple timer messages being processed by the client
application. Because of the nature of COM design, an error would be generated if a timer
message initiates a request to the server while another server request from the same client is
already in progress.

How to Include the
COM6SRVR in a
Visual Basic
application

All of the Visual Basic samples use a technique known as late binding to interface with the
COM6SRVR. The COM6SRVR is not linked at compile time; rather, the link is created
dynamically at run time. Unlike an OCX control that needs to be added to a VB form, the
COM6SRVR does not require to be added to a form. Creating and using the COM6SRVR is all
performed in software. Creating the COM6SRVR is performed with the CreateObject VB
function.

How to upgrade a
Visual Basic
application to use
the latest
COM6SRVR

You should create your Visual Basic application using the late binding technique to interface
with the COM6SRVR (see above). The benefit, here, is that whenever a new version of the
COM6SRVR is available or installed on the PC, all applications written in Visual Basic with
the late binding technique should continue to run satisfactorily.

The latest COM6SRVR may be downloaded from the Support portion of the
Compumotor web site at http://www.compumotor.com.

How to include the
COM6SRVR in a
Visual C++
application

The process below demonstrates how to create a minimal dialog-based application that includes
the Com6srvr. Refer also to the sample applications installed in the Motion Planner\Samples\Vc5
directory. (NOTE: The samples are installed only if you use the “custom” installation option.)

1. Using Visual C++ AppWizard …

a. Create an MFC Exe application.
b. Select the “Dialog based” option.
c. In the Wizard steps it is not necessary to select the “ActiveX” or “Automation” check

boxes.

2. When the application is created, include the afxole.h and afxdisp.h header files. These
header files add libraries required for Ole Automation and the COleDispatchDriver class.

3. Initialize the Ole libraries with a call to AfxOleInit. (Refer to sample applications.)

4. Using Visual C++ Class Wizard …

a. Click the “Add Class…” button and select “From a Type Library” from the drop-down
menu.

b. In the “Import From Type Library” dialog, locate the Com6srvr.tlb file and click the
Open button. (The Com6srvr.tlb file is included on the Motion Planner CD-ROM.
Recommendation: Copy this file to your project directory.)

c. Select the relevant interface class (“INet” for 6K Ethernet, “IRS232” for 6K RS232, or
“IGemini” for the Gemini drives). Once the class is imported, the wizard creates two
new files and adds them to the project: Com6srvr.cpp and Com6srvr.h.

5. Add a class instance for the interface class you selected in Step 4.c. above (INet, IRS232
or IGemini). Refer to the m_NetServer variable in the VC_Ethernet sample.

6. To understand how to use the libraries, study the sample applications. Pay particular
attention to the code related to the Connect, Write and Read methods.

http://www.parkermotion.com/

Page 30 6K Addendum (p/n 88-017657-01C)

How do I rebuild my
Visual C++ project
with the new
COM6SRVR?

If the COM6SRVR “Interface” changes (because Compumotor has added new properties or
methods), it is necessary to re-build your VC++ application and link in the new COM6SRVR to
take advantage of any of the new features. Use this step-by-step procedure:

1. Make a backup of your project.
2. Make a backup of your current Com6srvr.exe file (typically located in the

Windows\System\ directory or in the Program Files\Compumotor\Motion Planner\
directory).

3. Replace the Com6srvr.exe by overwriting the existing version with the new one from the
CD-ROM. Register the new Com6srvr by executing the Com6srvr.exe once. The mouse
pointer may change to an hourglass for a couple of seconds while it’s being registered.

4. Start VC++ and open the Project Workspace (File > Open Workspace).
5. Use menu item View > Workspace and select the File View tab.
6. Expand the Source Files node and highlight the Com6srvr.cpp file. Remove the file from

the project by pressing the DEL key.
7. Expand the Header Files node in the Workspace window. Highlight the Com6srvr.h file

and remove it from the project by pressing the DEL key.
8. Save the Workspace (File > Save Workspace) and exit VC++.
9. Start Windows Explorer and locate the project directory.
10. Delete the Com6srvr.cpp, Com6srvr.h and Com6srvr.tlb files.
11. Copy the new Com6srvr.tlb from the CD-ROM into the project directory.
12. Locate the project’s Class Wizard database file (.clw file) and delete it.
13. Start VC++ and Open the project Workspace.
14. Note that the COM6SRVR Interfaces (IGemini, IRS232 or INet) no longer appear in the

Workspace Window’s Class View.
15. Run the class wizard (View > Class Wizard).
16. A dialog appears stating that the class wizard database file does not exist and prompts you

to re-build it from your source files. Click the YES button.
17. A “Select Source Files” dialog appears. Click OK.
18. The MFC Class Wizard dialog now appears. Click the Add Class button and select “From

a type library” on the drop-down menu.
19. Locate the Com6srvr.tlb file and click the Open button.
20. A “Confirm Classes” dialog appears. All classes (IRS232, INet and Igemini) are

highlighted. Select only the classes that are of particular interest. Accept the recommended
Header and Implementation File names of Com6srvr.h and Com6srvr.cpp. Click the OK
button.

21. Back at the MFC Class Wizard, click OK button.
22. Rebuild the complete project (Build > Rebuild All).
23. Save the Workspace (File > Save Workspace).

Overview of the
VB5 Samples on
the CD-ROM

The VB5 samples are installed if you select Custom installation when installing Motion
Planner. The samples are installed on the hard disk in the …\Motion Planner\Samples\VB5
directory. Each sample has its own sub-directory.

The VB5 samples are located on the CD-ROM in the directory 6K\Samples\VB5. Again, each
sample has its own sub-directory. To copy the files from the CD-ROM use Windows Explorer
to copy the sub-directory and its contents to a new location on your hard disk. NOTE, however,
that the file attributes will be set to read-only, because the CD-ROM is read-only media. To
change the attributes: Using Windows Explorer, locate the sub-directory. Open the sub-
directory such that all files are now visible. Use the Edit > Select All menu to select all files.
Then, use the menu File > Properties, the dialog shows a Read-Only box with a check mark
against it. Uncheck the box and click OK. Now it is possible to open the files and save them in
Visual Basic. When using Motion Planner's Custom install to install the samples, the read-only
attribute is automatically reset.

http://www.parkermotion.com/

6K Addendum (p/n 88-017657-01C) Page 31

There are three VB5 Samples:
• SimpleOne
• SimpleOnePlus
• Terminal
• 6K_Capture_Sample

To become familiar with the COM6SRVR and how it is used in Visual Basic, review the
SimpleOne application. This sample demonstrates the absolute basics. It deals with creating an
instance of the COM6SRVR using Visual Basic’s CreateObject function. Then it
demonstrates how to make a connection to the 6K and how to close or disconnect a connection.
The main form also has two buttons, “Send Command” and “Read Response,” to demonstrate
the Write and Read methods of the COM6SRVR. The “Easy Get Data” and “Get Data” buttons
demonstrate two techniques to get data from the Ethernet Fast Status.

The Terminal application builds upon the basics introduced by the SimpleOne application. It
creates a Terminal to communicate with the 6K via Ethernet or RS-232. Buttons to demonstrate
the SendFile, GetFile and SendOS methods are included. The Fast Status and Alarms are
demonstrated in the form frmFastStatus.

6K_Capture_Sample is a utility as much as a sample. It can be used to capture fast status
packets from the 6K and store the data for later use.

Overview: Using
Fast Status

Fast Status is a tool you can use to keep the COM6SRVR informed of conditions within the 6K
(conditions such as the values of motor position, encoder position, axis status, and the current
value of some of the integer and binary variables). A client application can interrogate the
COM6SRVR’s fast status data to check various 6K conditions (input states, variable values,
system conditions, etc.) in two ways:

• Interrogate individual fast status elements via their respective properties. This is the
easiest to implement.

• Interrogate the entire fast status data structure. This is more complex, is advantageous
when you need to check many data elements at one time.

Interrogating Individual Fast Status Elements

The fast status data structure comprises many elements. Each element may be interrogated
through the use of its respective property. The table below lists each fast status data element
and its respective property.

Fast Status — Packet Data Definition (280 bytes total)

Type Description Bytes Property (see pages 22-28)

WORD wUpdateID Unique update ID for synch channel 2 No property available
WORD wCounter Time Frame Counter 2 Counter
DWORD dwMotorPos[8] Commanded Position (TPC) 32 MotorPos
DWORD dwEncPos[8] Encoder Position (TPE) 32 EncoderPos
DWORD dwMotorVel[8] Commanded Velocity (TVEL) 32 MotorVel
DWORD dwAxisStatus[8] Axis Status (TAS) 32 AxisStatus
DWORD dwSystemStatus System Status (TSS) 4 SystemStatus
DWORD dwErrorStatus Error Status (TER) 4 ErrorStatus
DWORD dwUserStatus User Status (TUS) 4 UserStatus
DWORD dwTimer Timer (TTIM) 4 Timer
DWORD dwLimits Limit Status (TLIM) 4 Limits
DWORD dwInputs[4] Input Status (TIN) 16 Inputs
DWORD dwOutputs[4] Output Status (TOUT) 16 Outputs
DWORD dwTriggers Trigger Status (TTRIG) 4 Triggers
WORD wAnalogIn[2] Analog Input Value (TANI - in counts) 4 AnalogInput
DWORD dwVarb[10] Binary Variable Values (VARB1 – VARB10) 40 VarB
DWORD dwVari[10] Integer Variable Values (VARI1 – VARI10) 40 VarI
DWORD dwIPAddress IP Address (NTADDR) 4 IPAddress
DWORD dwCmdCount Command Count 4 CommandCount

NOTE: Each call to the COM6SRVR incurs overhead; therefore, you should be aware that
interrogating many different fast status elements at one time is slower than interrogating the
entire data structure (see below).

Page 32 6K Addendum (p/n 88-017657-01C)

Interrogating the Entire Fast Status Structure

Accessing data in the fast status structure is more complex than interrogating individual
elements, but it has the advantage that only one call to the COM6SRVR is required to access
the entire fast status structure — this reduces overhead when multiple data elements are
required.

The COM6SRVR FastStatus property (see page 24) returns a VARIANT data type, which is
actually an array of bytes. The array of bytes is copied into a structure. Ordering the array of
bytes and structure elements is very important to ensure that the correct data bytes are copied
into the correct structure elements. (Do not change the fast status structure or TypeDef.)
In Visual Basic, use the Windows API CopyMemory function to copy bytes into the
structure; in Visual C++, the copying is performed through use of SAFEARRAYS (refer to
the MakeFastStatus function in the VC_Ethernet sample provided).

There are two techniques for updating the Fast Status: Streaming and On Demand.

• The Streaming technique is particularly useful for HMI type applications where a
constant stream of data at a set interval is required. To use streaming, set a streaming
interval with the FSUpdateRate property (see page 25) and enable streaming by setting
the FSEnabled property to TRUE (see page 25).

• The On Demand technique can reduce network traffic by sending fast status packets
only when required, rather than at a pre-defined interval. The fast status packet can be
updated by a call to the COM6SRVR RequestFastStatusUpdate method (see page 18),
or under 6K program control with the 6K command NTSFS (see page 41). Similarly,
when a 6K generates an alarm, such as INTSW1, a fast status packet (280 bytes) is
automatically sent to the COM6SRVR. Note that the On Demand technique operates
independent of the FSEnabled property and the FSUpdateRate property. The sample
VB program called SimpleOnePlus demonstrates the use of RequestFastStatusUpdate.

Customizing Fast
Status

DEL PLCP1
DEF PLCP1
 VARI1 = VARI1 + 1
 VARB1 = 1FS
END

PCOMP PLCP1

VARI1=0

SCANP PLCP1

The Fast Status structure (see page 24) provides most of the frequently required system
parameters (e.g., motor position and axis status). However, there are times when a specific
status condition or parameter is required, but not provided by default. One such example might
be Following Status (TFS).

The Fast Status packet always includes ten integer variables (VARI1 – VARI10) and ten binary
variables (VARB1 – VARB10). This allows you to customize part of the Fast Status packet by
copying status conditions of interest into the VARI or VARB variables. Below are two scenarios
that demonstrate two methods of using variables to customize the Fast Status.

Scenario 1: An HMI application must inform the operator of the total number of products
made, the number of products that meet specification (passes), and number of products
that fail to meet specification. In this type of scenario, the Total Number is assigned to
VARI1, the number of Passes to VARI2, and the number of failures to VARI3. These
variables are then updated as needed. For example, when a product is made, VARI1 is
incremented. This insures the data is automatically updated in the Fast Status packet; then
the HMI application can use the VARI(1) property to interrogate the VARI1 value.

Scenario 2: Another method to maintain the information is to use a PLCP program, launched in
the Scan Mode with the SCANP command. The PLCP program updates the variable (VARI
or VARB). In this manner, the parameter of interest can be mapped to a specific variable.
Example: Use VARB to allow monitoring of Following Status (TFS) and allow VARI1 to
auto-increment (see code at left).

Then use the “ActiveXFastPanel” in Motion Planner’s Panel Maker to monitor the
“Variables” grid. You’ll notice that VARI1 is continually incrementing and that as you
enable and disable Following on axis 1 (FOLEN1 / FOLEN0), bit 6 of VARB1 is set and
cleared.

6K Addendum (p/n 88-017657-01C) Page 33

Overview: Using
Variable Packets

Using variable packets, you can quickly and efficiently transfer large amounts of data from the
COM6SRVR to the 6K. The variables packet comprises: integer variables 1-12 (VARI1 –
VARI12), real variables 1-12 (VAR1 – VAR12), and binary variables 1-8 (VARB1 – VARB8).

Variable packets can be sent by one of two COM6SRVR methods:

• The SendVariable method (see page 19) allows transmission of one variable. To use
SendVariable, you define: (a) a mask to specify which variable to update, and (b) the
value of the variable. Mask bits for Visual Basic and Visual C++ are provided below.

• The SendVariablePacket method (see page 20) allows one or all variables to be sent in
one packet. The SendVariablePacket method requires a SendVariable structure to be
populated, copied into a variant and then pass the variant to the SendVariablePacket
Method. The SendVariable structure comprises several elements: a Mask, several
reserved elements and an array of twelve elements for integer variables, an array of
twelve elements for real variables and an array of eight elements for binary variables (see
structure lists below). Several mask constants can be Or’ed together to allow 6K variables
to be updated (see mast lists below).

TIP: Using the a variable packet method (SendVariable or SendVariablePacket) and an On
Demand Fast Status interrogation technique (RequestFastStatusUpdate method or the 6K
command NTSFS) provides a clean and efficient communication tool between the client
application and the 6K program. Although variables can be sent as a command using the Write
method, the time taken to parse the command and check data validity is longer than the time to
send an entire variable packet.

A sample VB program called SimpleOnePlus is provided; it demonstrates the use of the
SendVariable and SendVariablePacket COM6SRVR methods.

Variable Structure for Visual Basic Variable Structure for Visual C++
Type SendVariableStructure
 Mask As Long
 Reserved1 As Long
 Reserved2 As Long
 Reserved3 As Long
 VarI(1 To 12) As Long
 VarR(1 To 12) As Double
 VarB(1 To 8) As Long
End Type

typedef struct VARIABLEPACKETStruct {
 int nVariableMask;
 int nReserved1;
 int nReserved2;
 int nReserved3;
 int VARI[12];
 double VAR[12];
 int VARB[8];
} VARIABLEPACKET, *LPVARIABLEPACKET;

Variable Packet Mask Bits for Visual Basic Variable Packet Mask Bits for Visual C++
Public Const VARI1 As Long = 1
Public Const VARI2 As Long = 2
Public Const VARI3 As Long = 4
Public Const VARI4 As Long = 8
Public Const VARI5 As Long = 16
Public Const VARI6 As Long = 32
Public Const VARI7 As Long = 64
Public Const VARI8 As Long = 128
Public Const VARI9 As Long = 256
Public Const VARI10 As Long = 512
Public Const VARI11 As Long = 1024
Public Const VARI12 As Long = 2048

Public Const VAR1 As Long = 4096
Public Const VAR2 As Long = 8192
Public Const VAR3 As Long = 16384
Public Const VAR4 As Long = 32768
Public Const VAR5 As Long = 65536
Public Const VAR6 As Long = 131072
Public Const VAR7 As Long = 262144
Public Const VAR8 As Long = 524288
Public Const VAR9 As Long = 1048576
Public Const VAR10 As Long = 2097152
Public Const VAR11 As Long = 4194304
Public Const VAR12 As Long = 8388608

Public Const VARB1 As Long = 16777216
Public Const VARB2 As Long = 33554432
Public Const VARB3 As Long = 67108864
Public Const VARB4 As Long = 134217728
Public Const VARB5 As Long = 268435456
Public Const VARB6 As Long = 536870912
Public Const VARB7 As Long = 1073741824
Public Const VARB8 As Long = &H80000000

#define VARI1 0x00000001
#define VARI2 0x00000002
#define VARI3 0x00000004
#define VARI4 0x00000008
#define VARI5 0x00000010
#define VARI6 0x00000020
#define VARI7 0x00000040
#define VARI8 0x00000080
#define VARI9 0x00000100
#define VARI10 0x00000200
#define VARI11 0x00000400
#define VARI12 0x00000800

#define VAR1 0x00001000
#define VAR2 0x00002000
#define VAR3 0x00004000
#define VAR4 0x00008000
#define VAR5 0x00010000
#define VAR6 0x00020000
#define VAR7 0x00040000
#define VAR8 0x00080000
#define VAR9 0x00100000
#define VAR10 0x00200000
#define VAR11 0x00400000
#define VAR12 0x00800000

#define VARB1 0x01000000
#define VARB2 0x02000000
#define VARB3 0x04000000
#define VARB4 0x08000000
#define VARB5 0x10000000
#define VARB6 0x20000000
#define VARB7 0x40000000
#define VARB8 0x80000000

Page 34 6K Addendum (p/n 88-017657-01C)

OS 5.1.0 Firmware Enhancements

OS 5.1.0 provides these firmware enhancements:

• Virtual inputs ... page 35

• Contouring enhancements ... page 36

• PLC Scan Mode enhancements ... page 38

• Ethernet enhancements (OS 5.1.0 and COM6SRVR) page 40

• Gemini Drive stall input (monitoring, error handling) page 42

• Additional status bits in TAS, TASX, and TFS page 43

• Controller status .. page 43

• Mapping inputs to an integer variable page 45

• String variable (VARS) enhancements page 46

• Added Following master (FOLMAS) options page 46

• Increased memory capacity ... page 46

• Support for EVM32 enhancements page 46

New Commands

ANO Set Analog Output Value ... page 58
[ANO] Analog Output Value (assignment/comparison operand) page 58
DSTALL Drive Input Stall Detection (enable/disable) page 42
IN Virtual Input Override .. page 35
INVARI Map Inputs to Integer Variable .. page 45
KIOEN Kill on EVM32 I/O Disconnect (enable/disable) page 59
NTSFS Ethernet Send Fast Status Packet ... page 41
PGOWHN Path Conditional Go ... page 37
PVF.................... Path Final Velocity ... page 36
[SC] Controller Status (assignment/comparison operand) page 44
[SCAN] PLC Scan Runtime (assignment/comparison operand) page 39
TANO Display Status of Analog Outputs .. page 59
TNT Display Ethernet Status .. page 40
TSC Display Controller Status ... page 43
TSCF Display Controller Status (full-text report) page 44

6K Addendum (p/n 88-017657-01C) Page 35

Virtual Inputs The virtual input override feature, implemented with the IN command
allows you to use any 32-bit data as an I/O brick containing up to 32 inputs.

IN Virtual Input Override
Type Inputs
Syntax <!>IN<=xx>
Units B = I/O brick number

xx = 32-bit data operand (see list below)
Range B = 1-8
Default n/a
Response n/a

See Also [IN], INDEB, INEN, INFNC, INPLC, INSTW, TIN,
TIO, VARSHI, VARSHO

Product Rev

6K 5.1

The Virtual Input Override (IN) command allows you to substitute almost any 32-bit data
parameter as a virtual input brick of 32 inputs. The virtual inputs behave similar to real inputs
in that they are affected by INEN and INLVL, and they affect INFNC, INPLC, INSTW, INDUST,
ONIN, and GOWHEN(IN=b<bbbb>) commands. Unlike real inputs, virtual inputs are not
affected by the INDEB debounce setting. The data operands allowed for virtual input
assignments are: A, AD, ANI, ANO, AS, ASX, D, DAC, DKEY, ER, FB, FS, IN, INO, LIM, MOV, NMCY,
OUT, PANI, PC, PCCn, PCEn, PCME, PE, PER, PMAS, PME, PSHF, PSLV, SC, SCAN, SEG, SS, SWAP,
SYNCH, TASK, TIM, TRIG, US, V, VARI, VARB, VEL, VELA, VMAS, and VARSHI.

NOTE: A virtual input can only be defined for I/O bricks that are not connected on the serial
I/O network (remember that up to 8 I/O bricks are allowed). For example, if your 6K unit has
two I/O bricks, you can designate I/O bricks 3-8 as virtual I/O bricks.

There are two main uses of the virtual input override feature:

• Virtual inputs are helpful for systems using the Synchronous Bus option (details in the 6K
Synchronization Bus Guide, p/n 88-018179-01). Instead of requiring each 6K unit to have
its own I/O brick with inputs, one “global” input brick can be shared across the
synchronous bus using the VARSHO<x>=IN command, and the other synch units can
use this data as a virtual input brick using the IN=<i>VARSHI<x> command.

For example, suppose two 6K controllers are connected on a synch bus and synch unit #1
has one I/O brick (input brick #1) with 2 input SIMs in slots 1 and 2. Synch unit #2 has no
I/O bricks connected, but needs to base its motion control of the state of the inputs on
synch unit #1’s I/O brick. Synch unit #1 executes VARSHO1=1IN to assign the state of all
32 bits of input data from brick #1 (1IN) to shared output variable #1 (VARSHO1). Synch
unit #2 executes 1IN=1VARSHI1 to assign synch unit #1’s VARSHO1 data (which is 1IN)
to be its “virtual” input brick #1 (identical to synch unit #1).

6K Synch Unit #1
Execute: VARSHO1=1IN

Two Input SIMs
in I/O brick #1

(I/O points 1-16)
After “virtual input” setup, the 1TIN report for both synch units is (if all inputs off):
 *1TIN0000_0000_0000_0000_XXXX_XXXX_XXXX_XXXX

6K Synch Unit #2
Execute: 1IN=1VARSHI1

• Virtual inputs also provide programming input functionality for data or external events
(see operand list above) that are not ordinarily represented by inputs.
For example, suppose a PLC is sending binary data via the VARB1 command to the 6K. If
the binary state of VARB1 is assigned to input brick 2 (2IN=VARB1), the 6K can respond
based on programmable input functions set up with the INFNC command.
2TIN ; Brick 2 is not connected; therefore, the 6K will

; respond with an error message: "*INCORRECT I/O BRICK"
2IN=VARB1 ; Map the binary state of VARB1 to be the

; input state of "virtual" input brick 2 (2IN)
VARB1=b10100000 ; Change "virtual" input brick 2IN to a new VARB1 value
2TIN ; Check the input status. The response will be:

; "*2IN1010_0000_0000_0000_0000_0000_0000_0000"

Page 36 6K Addendum (p/n 88-017657-01C)

Contouring Enhancements Two commands, PVF and PGOWHN, were added improve the flexibility
and ease-of-use when implementing contouring motion programs.

PVF Path Final Velocity
Type Path Contouring
Syntax <!>PVF<r>
Units r = units/sec (scalable with SCLD)
Range Stepper axes: 0.0000-2048.0000

 (max. depends on SCLD & PULSE)
Servo axes: 0.0000-6500.0000
 (max. depends on SCLD)

Default n/a
Response n/a

See Also PA, PAD, PV, SCALE, SCLD

Product Rev

6K 5.1

The PVF command allows a line or arc segment to terminate with a final segment velocity (PVF)
which may be different from the velocity traveled for the majority of that segment (specified with
PV). PVF must be smaller than or equal to PV, and the path velocity change will take place at the
PAD deceleration rate. Like the other path motion parameters (e.g., PV, PA, PAD), the PVF velocity
is applied to the next line or arc compiled; however, unlike these other commands, the PVF
command applies only to the next line or arc compiled. All subsequent lines and arcs terminate at
the PV value currently in effect. For each line or arc that needs to terminate at a velocity different
than PV, a new PVF command must be issued, even if the PVF value has not changed.

The most common use for the PVF command will be to cause a preceding line segment to
decelerate to the path velocity at which the next line or arc needs to travel. In this case, the PVF
value for the preceding line would be the same as the PV value of the reduced speed segment.
This feature eliminates the need to create a special deceleration segment in the path in order to
have the entire subsequent line or arc travel at the reduced speed.

Example: In the example below, segments 2 and 4 must travel at a path velocity of 1, while the
remainder to the path travels at a path velocity of 5.

Segment 1 Segment 2 Segment 3
Segment 4

Segment 5

DEF CORNER
PAB1 ; Use absolute positions
PA10 ; Path acceleration of 10
PAD10 ; Path deceleration of 10
PV5 ; Starting path velocity of 5
PVF1 ; Ending segment velocity of 1
PLIN5,0 ; 5 units right (Segment 1)
PV1 ; Path segment velocity of 1
PLIN6,0 ; Another unit right, slowly (Segment 2)
PV5 ; Starting path velocity of 5
PVF1 ; Ending segment velocity of 1
PLIN11,0 ; 5 more units right (Segment 3)
PV1 ; Path segment velocity of 1
PARCM12,1,1 ; Upward arc slowly (Segment 4)
PV5 ; Starting path velocity of 5
PLIN12,6 ; 5 units up (Segment 5)
END

5

1

Path
Velocity

Seg 1 Seg 2 Seg 3 Seg 4 Seg 5

6K Addendum (p/n 88-017657-01C) Page 37

PGOWHN Path Conditional Go
Type Path Contouring
Syntax <!>PGOWHN(expression)
Units n/a
Range Up to 80 characters (including parentheses)
Default n/a
Response n/a

See Also PA, PAD, PV, PVF, POUT

Product Rev

6K 5.1

The PGOWHN command allows a fixed or conditional delay in path travel to occur as part of the
contouring motion profile, without requiring program execution to monitor the PGOWHN
conditions. Combined with the PVF command, PGOWHN provides a convenient method of
imbedding a dwell within a contour.

��������	
��	

����

����������
�����		���
�������

���	�����	��������	�����������	����������������	������

��		����
��������	�

�������� ���������	��
����
��������� �����
	����
���������� �����
���
 ����	����!	"

��		����
��������	�

��
��
�
�
�

��		����
��������	�

�� ����
$�������	
���
��
����"

���� ��
���	����
%�����
$����
�!"""""
&��
��
��
���
��������

The expression in the PGOWHN command may be specified as a time (dwell) in milliseconds
(e.g., PGOWHN(T=2000)), or as inputs or limits matching the specified binary pattern (e.g.,
PGOWHN(LIM.3=B1) or PGOWHN(2IN.6=B0)). All participating axes will be at rest during a
dwell, even if the previous segment had not ended in zero path velocity. In the latter case
(limit or input condition), there will be an abrupt change to zero path velocity, until the
PGOWHN condition is satisfied.

When the PGOWHN condition is satisfied, path velocity will ramp to the next segment’s PV
value. Although no motion occurs during a PGOWHN segment, it occupies one segment of
compiled memory. Like the line and arc segments, an output pattern may be asserted for the
duration of the PGOWHN dwell by preceding the PGOWHN statement with a POUT statement (see
example below).

Example:

In the example below, the total path travel is six inches. At five inches, motion must stop until
input 3 goes active. During this time, output 2 must be asserted. When input 3 goes active,
output 2 must go off and motion then resumes for the final inch.

DEF BISEG
PAB1 ; Use absolute positions
PA10 ; Path acceleration of 10
PAD10 ; Path deceleration of 10
PV5 ; Starting path velocity of 5
PVF0 ; Ending segment velocity of 0
POUT.2-0 ; Start with onboard output 2 off
PLIN5,0 ; 5 units right
POUT.2-1 ; Output 2 on during dwell
PGOWHN(IN.3=B1) ; Dwell until onboard input 3 is active
POUT.2-0 ; Output 2 off during motion
PLIN6,0 ; Another unit right to finish
END

Page 38 6K Addendum (p/n 88-017657-01C)

PLC Scan Mode Enhancements

The internal scan method was changed to improve throughput and ease of use.

Before 5.1.0
(Old Method)

The PLCP program
scan was allowed a 0.5
ms window at the
beginning of each 2-ms
system update period. If
the contents of the
PLCP program required
more than 0.5 ms to
scan, it was paused for
the remaining 1.5 ms of
the 2-ms update period
and then resumed at the
next 0.5 ms scan
window in the
subsequent 2-ms update
period.

Scanning

Scanning

• I/O Updated by System
• Trajectories calculated
• Programs/Tasks run
• Etc.

End Scan Window

Begin Scan Window

End Scan Window

Begin New Scan
(or resume scan)

2 millisecond
System Update Period

0

2 msec

Time (msec)

Note: In Scan mode, when a
scan is complete, the next scan
will begin at the start of the
next 2 ms System Update Period.

Allowed scan time per
system update is
0.5 milliseconds.

5.1.0
(New Method)

Instead of waiting for a
certain amount of time
before stopping a scan,
and then continuing at
the next 2-ms update,
the scan will stop after
30 segments have been
executed and resume at
the next 2-ms update.
PLCP programs, when
compiled, are
comprised of a linked
list of PLC segments.
During a scan, each
segment is counted until
the total number of
segments executed
exceeds 30.

Scanning

Scanning

• I/O Updated by System
• Trajectories calculated
• Programs/Tasks run
• Etc.

30-segment limit

Begin Scan Window

End Scan Window

Begin New Scan
(or resume scan
 at next segment)

2 millisecond
System Update Period

0

2 msec

Time (msec)

Note: In Scan mode, when a
scan is complete, the next scan
will begin at the start of the
next 2 ms System Update Period.

To ascertain the scan time
required to execute 30
segments, use TSCAN
or [SCAN].

Reminder: Most statements (commands) allowed in a PLCP program consume
one segment of compiled memory after the program is compiled with PCOMP; the
exceptions are VARI and VARB (each consume 2 segments) and IF statements.
Each IF conditional statement consumes 2 segments, plus 1 segment for each
additional evaluation in compound statements. For example, IF(IN.1=b1)
consumes 2 segments, and IF(IN.1=b1 AND 1AS.1=b0) consumes three
segments.

If the 30-segment limit occurs while executing a multi-segment statement, then that statement
will finish no matter how many segments it executes. For example, if 29 segments have

6K Addendum (p/n 88-017657-01C) Page 39

executed, then the next segment will cause the scan to pause until the next 2-ms update. If that
next statement is VARI1=1PE, which executes 2 segments, then VARI1=1PE will complete its
operations before pausing the scan.

What does this all mean? It means that the scan functionality of the 6K is now deterministic in
its run time. Each pass, if taking the same path through the conditional branches (IF
statements), will always report the same TSCAN value.

Additional features have been added to OS 5.1.0 in support of PLCP programs:

• Before OS 5.1.0, TSCAN was the only way to ascertain the scan runtime, but a new
parameter, [SCAN] – see description below, has been added such that the scan runtime
can be assigned to a variable (e.g., VARI1=SCAN).

• As of OS revision 5.1.0, when a PLCP program is being executed in Scan Mode, bit #3
is set in the Controller Status register (reported with the new TSC, TSCF and SC
commands).

• As of OS revision 5.1.0, PLCP programs may now include HALT, BREAK, TIMST, and
TIMSTP and commands.

HALT: If the PLCP program is executed with PRUN, HALT will stop the PLC program
(and the program that executed the PRUN statement) running in that task. If the PLCP
program is executed with SCANP, HALT will kill the scan.

BREAK: If the PLCP program is executed with PRUN, BREAK will stop a PLC program
which is in process. If the PLCP program is executed with SCANP, HALT will end that
scan and the scan will restart at the next 2-millisecond update.

[SCAN] Scan Time
Type PLC Scan Program; Assignment or Comparison
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also PLCP, SCANP, TSCAN

Product Rev

6K 5.1

Use the SCAN operand to assign the PLCP runtime (the duration it took the last PLCP program
scan to complete) to a variable, or to make a comparison against another value. A compiled
PLCP program is launched into Scan mode using the SCANP command. During each 2-ms
update, the PLCP program is scanned until 30 segments have been executed. It the PLCP
program takes more than 30 segments to complete, the program will be paused and then
resumed at the next 2-ms system update. The SCAN value is in multiples of the 2-ms system
update period.

Example:
SCANP PLCP1 ; Start execution of compiled PLCP program 1 in

; Scan mode
VARI1=SCAN ; Assign the duration of the last scan to integer

; variable VARI1

Page 40 6K Addendum (p/n 88-017657-01C)

Ethernet Enhancements

Four enhancements were added.

• A handshake between the communications server (COM6SRVR) and the 6K detects for
both sides whether or not the Ethernet connection goes down. In the 6K, if the
handshake is missed from the COM6SRVR, error bit 22 (ER.22 and TER.22) is set. Bit
#22 is also added to the error-checking list; thus, if this bit is enabled with ERROR, the
6K will branch (GOSUB) to the ERRORP program if the Ethernet connection fails. To
recover, disable the relevant error checking bit (ERROR.22-0), re-establish the Ethernet
connection, then re-enable the error checking bit (ERROR.22-1).

• The new TNT reports the current Ethernet conditions (see command description below).

• The NTSFS command as added to allow you to send a fast status packet to the
COM6SRVR as needed, without having to use the COM6SRVR to request the update.

• An additional option was added to NTFEN (see description on page 41). NTFEN2 is
recommended as the standard Ethernet communication mode, even if you are using a closed
network and no file sharing. NTFEN2 is especially helpful if you are using Windows NT, or
Windows 95/98 with File Sharing and/or an open network. NOTE: When using NTFEN2,
you must also follow the ARP -S Static Mapping procedure (see page 5). Refer also to the
Ethernet configuration procedures on page 5.

TNT Transfer Ethernet Status
Type Transfer
Syntax <!>TNT
Units n/a
Range n/a
Default n/a
Response TNT: (see sample response below)

See Also NTADDR, NTFEN

Product Rev

6K 5.1

The TNT command reports the current Ethernet conditions (see sample response below).

*6K ETHERNET STATUS
*Ethernet enabled: NTFEN2
*6K IP address: 172.20.34.156
*6K Ethernet address: 0-144-85-0-0-1 (decimal)
*6K Ethernet address: 0-90-55-0-0-1 (hex)
*6K Ethernet connected

How to interpret the status report

• Ethernet enabled (NTFEN): NTFEN2 is recommended as the standard Ethernet
communication mode, even if you are using a closed network and no file sharing. NTFEN2
is especially helpful if you are using Windows NT, or Windows 95/98 with File Sharing
and/or an open network. NOTE: When using NTFEN2, you must also follow the ARP -S
Static Mapping procedure (see page 5).

• 6K IP address:
This is the IP address that you specified (NTADDR command) in the configuration
process (see configuration procedure on page 5).

• 6K Ethernet address:
This is the Ethernet “MAC” address that is given to the 6K unit at the factory.

• 6K Ethernet connected/not connected:
Ethernet is “Connected” if the Ethernet hardware connection is good and your PC is
communicating to the 6K over a valid Communication Server/Motion Planner
connection.

6K Addendum (p/n 88-017657-01C) Page 41

NTSFS Ethernet Send Fast Status Packet
Type Communication
Syntax <!>NTSFS
Units n/a
Range n/a
Default n/a
Response n/a

See Also NTFEN

Product Rev

6K 5.1

The NTSFS command allows a 6K program to send a Fast Status packet, as needed, from the
6K controller to a PC application (COM6SRVR). In a typical application, a PC may be
controlling a machine and using the COM6SRVR’s Variable Packets to send variables and
“job” instructions to the 6K. When the job is complete, the 6K could execute the NTSFS
command to send a Fast Status packet back to the PC, thus indicating that the job was
completed. Using the VarI and VarB elements of the Fast Status packet allows the 6K to
communicate that the job was completed satisfactorily or that a specific error caused the job to
fail.

NTFEN Ethernet Communication Enable
Type Communication Interface
Syntax NTFEN
Units b = Ethernet enable bit
Range 0 (disabled),

1 (enabled for Windows 95/98, no File Sharing,
 closed network),
2 (enabled – recommended for most Ethernet
 configurations)

Default 0 (Ethernet communication is disabled)
Response NTFEN: *0

See Also NTADDR, NTMASK, TNT, TNTMAC

Product Rev

6K 5.1

Use the NTFEN command to enable or disable Ethernet communication. The factory default
configuration is that Ethernet communication is disabled (NTFEN0). To enable Ethernet
communication, you must connect to the 6K’s “RS-232” serial port and send the NTFEN
command which is appropriate for your Ethernet configuration (see options below). Then you
can communicate over the Ethernet connection.

Options:

NTFEN0: Use NTFEN0 to disable Ethernet communication.

NTFEN1: NTFEN1 is primarily intended for use with Windows 95/98 with no File Sharing
and a closed network.

NTFEN2: NTFEN2 is recommended as the standard Ethernet communication mode, even if
you are using a closed network and no file sharing. NTFEN2 is especially useful if
you are using Windows NT, or Windows 95/98 with File Sharing and/or an open
network.
NOTE: When using NTFEN2, you must also follow the ARP -S Static Mapping
procedure (see page 5).

NOTE: You can communicate to either the “ETHERNET” port or the “RS-232” port at one time.

The NTFEN setting is automatically saved in battery backed RAM. Thus, if you cycle power,
Ethernet communication will still be enabled.

If the Ethernet connection fails, the 6K will set error status bit #22 (see ER, TER, and TERF) if
error-checking bit #22 is enabled with the ERROR command. Also, if this error occurs, the 6K
will branch to the ERRORP program.

Page 42 6K Addendum (p/n 88-017657-01C)

Gemini Drive Stall Detection

Compumotor’s Gemini GT Series of digital drives provide an encoder-less stall detect feature.
When the GT detects a stall, it activates the Stall Output, which is connected to the 6K via pin
#4 (“Stall Input”) on the DRIVE connector.

To provide additional control in the event of a GT-detected stall, OS 5.1.0 introduces the
DSTALL command to enable Drive Input Stall Detection (see description below), which
functions much like the 6K’s encoder stall detection feature (ESTALL). Note that even if
DSTALL is not enabled, the state of the Stall Input can still be monitored at all times with
Extended Axis Status bit #7 (reported with TASX, TASXF, and ASX).

DSTALL Drive Input Stall Detection
Type Controller Configuration
Syntax <!><@><a>DSTALL
Units b = enable bit
Range b = 0 (disable), 1 (enable), or X (don’t change)
Default 0 (disabled)
Response DSTALL: *DSTALL0000_0000

1DSTALL: *DSTALL0

See Also [AS], [ASX], [ER], ERROR, ERRORP, ESK, ESTALL,
TAS, TASX, TER

Product Rev

6K 5.1

The DSTALL command determines if the Stall Input on pin #4 of the DRIVE connector will be
checked as Drive Stall indicator.

The state of the Stall Input can be monitored at all times with Extended Axis Status bit #7
(reported with TASX, TASF, and the ASX assignment/comparison operand); if left unconnected,
the input is low, and status bit #7 will be set (reports a “1”). If this input is enabled as a drive
stall indicator with the DSTALL1 command, a low input will be interpreted as a Drive Stall.

When a Drive Stall is detected, the 6K responds as follows: (this response is the same as that
for Encoder Stall Detection, which is enabled with the ESTALL command)

• The stall is reported with Axis Status bit #12 (reported with TAS, TASF, and AS).

• If ERROR error-checking bit #1 is enabled (ERROR.1-1):
- The stall is reported with Error Status bit #1 (reported with TER, TERF, and ER).
- The 6K branches to the assigned ERRORP program.

• If the Kill-on-Stall feature is enabled (ESK1), the 6K immediately stops pulses from being
sent to the affected axis.

Example:
DEF SETUP1
WAIT(2ASX.7=B0 AND 3ASX.7=B0) ; Be sure stall inputs are not active
DSTALL0110 ; Enable checking the Stall Input on axes 2 and 3
ENCCNT1001 ; Enable encoder counting on axes 1 and 4
ESTALL1001 ; Enable checking for 6K encoder stall on axes 1 and 4
ESK1111 ; Enable Kill On Stall function for axes 1-4
END

6K Addendum (p/n 88-017657-01C) Page 43

TAS, TASX, TFS – Added Status

Additional Axis Status bits (AS, TAS, TASF):

• Bit #29 is set if the input state or position relationship specified in the GOWHEN
command is already true when the GO, GOL, FGADV, FSHFC, or FSHFD command is
issued.

• Bit #31 is set while a compiled GOBUF profile is executing.

Additional Extended Axis Status bits (ASX, TASX, TASXF):

• Bit #7 reports the state of the Stall Input (pin #4 on the DRIVE connector), regardless of
the DSTALL setting.

Additional Following Axis Status bits (FS, TFS, TFSF):

• Bit #26 now indicates that either FMAXA or FMAXV is limiting the current Following
motion.

Controller Status Commands

OS 5.1.0 introduces a new status register for information that is not specific to an axis or a
task. TCS provides a binary status report, TSCF provides a full-text report, and SC is an
operand you can use to assign or compare the status of one or more binary status bits.

TSC Transfer Controller Status
Type Transfer
Syntax <!>TSC<.i>
Units i = controller status bit number
Range 1-32
Default n/a
Response TSC: *TSC0000_0000_0000_0000_0000_0000_0000_0000

TSC.1: *0

See Also [SC], SCANP, SYNCH, TSCF

Product Rev

6K 5.1

The TSC command provides a binary report of the current “Controller Status” register. If you
would like a more descriptive text-based report, use the TSCF command.

*TSCbbbb_bbbb_bbbb_bbbb_bbbb_bbbb_bbbb_bbbb

Bit 32Bit 1

Bit # Function (1 = Yes; Ø = No)

1 RESERVED

2 RESERVED

3 A PLC program is being executed in Scan Mode (SCANP).

4 RESERVED

5 Synch mode is enabled (SYNCH1).
((applicable only to the Synch Option of the 6K, not the standard 6K))

6 Fieldbus is operational.
((applicable only to the Fieldbus Option of the 6K, not the standard 6K))

7 RESERVED

8-32 RESERVED

Page 44 6K Addendum (p/n 88-017657-01C)

TSCF Transfer Controller Status (full-text report)
Type Transfer
Syntax <!>TSCF
Units n/a
Range n/a
Default n/a
Response TSCF: (see example below)

See Also [SC], SCANP, SYNCH, TSC

Product Rev

6K 5.1

The TSCF command provides a full-text report of the current “Controller Status” register. This
is an alternative to the binary report (TSC).

Example TSCF response:

*TSCF
*Reserved NO
*Reserved NO
*SCANP Running NO
*Reserved NO
*
*Synch Mode Enabled NO
*Field Bus Running NO

[SC] Controller Status
Type Assignment or Comparison
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also SCANP, SYNCH, TSC, TSCF, VARB

Product Rev

6K 5.1

Use the SC operator to assign the controller status bits to a binary variable (VARB) or to make a
comparison against a binary or hexadecimal value. To make a comparison against a binary
value, the letter b (b or B) must be placed in front of the value. The binary value itself must
only contain ones, zeros, or Xs (1, 0, X, x). To make a comparison against a hexadecimal
value, the letter h (h or H) must be placed in front of the value. The hexadecimal value itself
must only contain the letters A through F, or the numbers 0 through 9.

Syntax: VARBn=SC where “n” is the binary variable number, or SC can be used in an
expression such as IF(SC=b0100), or IF(SC=h7F). If it is desired to assign only one
bit of the controller status value to a binary variable, instead of all 32, the bit select (.)
operator can be used. For example, VARB1=SC.3 assigns controller status bit #12 to
binary variable 1: *VARB1=XX0X_XXXX_XXXX_XXXX_XXXX_XXXX_XXX_XXXX.

The function of each controller status bit is shown below.

Bit # Function (1 = Yes; Ø = No)

1 RESERVED

2 RESERVED

3 A PLC program is being executed in Scan Mode (SCANP).

4 RESERVED

5 Synch mode is enabled (SYNCH1).
((applicable only to the Synch Option of the 6K, not the standard 6K))

6 Fieldbus is operational.
((applicable only to the Fieldbus Option of the 6K, not the standard 6K))

7 RESERVED

8-32 RESERVED

6K Addendum (p/n 88-017657-01C) Page 45

Mapping Inputs to Integer Variables

INVARI Map Inputs to Integer Variable
Type Variable
Syntax <!>INVARI<i>,,<i>,<i>
Units (see below)
Range (see below)
Default n/a
Response INVARI: *INVARI1,1,1,12

See Also INDEB, INEN, INLVL, VARI

Product Rev

6K 5.1

The INVARI command allows a selected group of contiguous inputs to be interpreted as a
binary number and continuously assigned to the selected integer variable (VARI). The inputs
are specified by I/O brick number, starting bit number, and ending bit number. All inputs to be
mapped to a VARI must be contiguous and on the same I/O brick. These inputs are read and
masked internally, then shifted such that the starting bit is the low-order bit of the resulting
binary value. A change in the starting bit input will always result in a change of ±1 in the
resulting VARI, even if the starting bit number is not 1.

INVARI<i>,,<i>,<i>

VARI number. Range is 1-8.

I/O Brick number.
• 0 for onboard inputs
• 1-8 for external EVM32 I/0 bricks Starting bit location on I/O brick.

• Range is 1-32.
• The input must exist on the I/O brick at
the specified location.

Ending bit location on I/O brick.
• Range is 1-32.
• The input must exist on the I/O brick at
the specified location.

The 6K inputs are read every 2 milliseconds, modified by INLVL and INEN, and debounced
with the time specified in INDEB. The inputs specified by INVARI are monitored after they are
modified by INLVL and INEN, but before the debounce. Thus, the VARI variable specified by
the INVARI command will be updated every 2 milliseconds.

The VARI variables are not updated with inputs unless the INVARI is issued with valid values
for starting and ending bits. If the specified input bit does not exist onboard or on the I/O
brick, an error message (“*INVALID DATA”) will result.

Specifying bit 0 for both starting and ending bits disables the INVARI mapping
(INVARI<i>,,0,0).

Example:

A following application requires 2 axes to follow a master source that has position information
presented as a 12-bit binary number on digital outputs. Each axis must have its own master
source. An external I/O brick with three 8-bit digital input SIMs is used to read the 24 bits of
the two sources. The first source is wired to bits 1-12, and the second source to bit 13-24.

DEF SETUP
INVARI4,1,1,12 ; VARI4 reflects bits 1-12 of brick 1
INVARI5,1,13,24 ; VARI5 reflects bits 13-24 of brick 1
FOLMAS48,58 ; Axis 1 follows VARI4, axis 2 follows VARI5
FOLEN11 ; Both axes in Following mode.
END

Test: (Assert bits 2, 3, 15, and 16)
>VARI4
*VARI4=+6
>VARI5
*VARI5=+12
>TPMAS
*TPMAS+6,+12

Page 46 6K Addendum (p/n 88-017657-01C)

String Variable (VARS) Changes

OS 5.1.0 provides the option of copying one VARS to another VARS. VARSn=VARSm may be
used, as well as variable substitution for “n” or “m”. Also, the length of string variables has
been increased from 20 characters to 50 characters.

More Following Master Options

OS 5.1.0 adds two more options that can be used as a Following Master in the FOLMAS syntax:

• Option 7 (syntax is FOLMASn7). This option allows an axis to follow shared output variable
#1 (VARSHO1) of the Synch Bus unit specified with “n”. The range for “n” is 1-8 (the
maximum number of Synch Bus units). For example, FOLMAS,,,37 assigns axis #4 to
follow the VARSHO1 variable of Synch Bus unit #3.
NOTE: This option is applicable only to the Synchronization Bus option of the 6K
controller (for details, refer to the 6K Synchronization Bus Guide).

• Option 8 (syntax is FOLMASn8). This option allows an axis to follow the integer variable
(VARI) specified with “n”; that is, VARIn. The range for “n” is 1-8 (VARI1 – VARI8). For
example, FOLMAS,48 assigns axis #2 to follow VARI4.

This option is particularly useful in conjunction with the INVARI (Map Inputs to a VARI
Variable) feature – see page 45. INVARI continuously updates a specified VARI variable with
the value of a specified group of digital inputs, allowing an axis to follow a binary input
pattern. Another useful way to update the value of the VARI variable is to calculate its value
in a PLCP program (launched with the SCANP command).

The INVARI and SCANP options for updating VARI are good choices, because both are
performed every system update, thus facilitating smooth Following motion. It is also possible
to use an extra task (multi-tasking) to calculate VARI values, but the resulting updates will not
be as fast (not perfectly periodic); consequently, Follow motion will be less smooth.

Increased Memory Capacity

The 6K’s memory has been increased from 150,000 bytes to 300,000 bytes. The default
allocation is now MEMORY150000,150000 (150,000 bytes allocated to programs and 150,000
bytes allocated to compiled programs and profiles).

EVM32-Related Enhancements

OS 5.1.0 supports the new EVM32 SIMs with the following new commands:

ANO Set Analog Output Value ... page 58
[ANO] Analog Output Value (assignment/comparison operand) page 58
TANO Display Status of Analog Outputs .. page 59
KIOEN Kill on EVM32 I/O Disconnect (enable/disable) page 59

The TIO report was updated to include the analog output values.

NOTE: The SIM8-AN-OUT and SIM8-OUT-RLY10 SIMs cannot be used with operating
system versions earlier than OS 5.1.0.

Installation and programming information for the EVM32 enhancements begins on page 47.

6K Addendum (p/n 88-017657-01C) Page 47

EVM32 Enhancements

What’s new?

• Vented sheetmetal cover

• Adhesive labels to affix to the new sheetmetal cover (to identify the SIM configuration)

• SIM8-IN-EVM32: A new SIM that provides 8 digital inputs, with LEDs. (replaces SIM8-IN)

• SIM8-OUT-NPN: A new SIM that provides 8 digital sinking outputs, short-circuit protected, with LEDs

• SIM8-OUT-PNP: A new SIM that provides 8 digital sourcing outputs, short-circuit protected, with LEDs

• SIM8-OUT-RLY10: A new SIM that provides 8 reed relay outputs (10 watt max.), with LEDs

• SIM8-AN-OUT: A new SIM that provides 8 analog (±10V) outputs

• NOTE: The SIM8-AN-OUT and SIM8-OUT-RLY10 SIMs cannot be used with operating system
versions earlier than OS 5.1.0.

• New commands (see descriptions starting on page 58):
ANO Set Analog Output Value
[ANO] Analog Output Value (assignment/comparison operand)
TANO Display the Analog Output Value
KIOEN Kill on EVM32 I/O Disconnect (enable/disable)

• The TIO report has been updated to include analog output values and reed relay output values.

Hardware Installation

This material supersedes the information on pages 43-49 of the 6K Series Hardware Installation Guide (88-017547-01A).

Baseboard (EVM32-BASE).

SIM boards are
ordered separately
from the baseboard.

2-foot (0.61 m) cable is
provided with the baseboard
(EVM32-BASE).

Connect to the 6K’s “EXPANSION I/O”
connector (use the provided cable).

EVM32 Brick #2, cover removed
(2nd unit in serial chain)

EVM32 Brick #1, cover removed
(1st unit in serial chain)

Page 48 6K Addendum (p/n 88-017657-01C)

EVM32 Description

The EVM32 is a family of I/O modules (or “bricks”) that is sold as accessories to the 6K
Controllers. The purpose of the EVM32 is to provide more I/O than the 6K offers onboard.
Up to eight DIN-rail mountable EVM32 bricks can be connected in a serial chain to the 6K.
Each EVM32 brick can hold from one to four I/O SIM boards in any combination (each SIM
board provides eight I/O points, for a total of 32 I/O points per I/O brick).

Order an EVM32 brick and up to four I/O SIM boards per brick (see table below).

Product (p/n) Description

EVM32-BASE...........EVM32 baseboard, extrusion with built-in DIN rail mount (includes 2-foot cable).
SIM8-IN-EVM32SIM board with 8 digital inputs, with LEDs. Color code: RED.
SIM8-OUT-NPNSIM board with 8 digital sinking outputs, with LEDs. Color code: BLUE.
SIM8-OUT-PNP........SIM board with 8 digital sourcing outputs, with LEDs. Color code: BLUE.
SIM8-OUT-RLY10SIM board with 8 reed relay outputs, with LEDs. Color code: BLUE.
SIM8-AN-IN..............SIM board with 8 analog inputs (12-bit, ±10V inputs). Color code: GREEN.
SIM8-AN-OUT..........SIM board with 8 analog outputs (10-bit, ±10V inputs). Color code: BLACK.
71-016949-022-foot cable for connection to 6K or between I/O bricks (included with EVM32-BASE).
71-016949-100100-foot cable for connection to 6K or between I/O bricks.

EVM32 Specifications

Parameter Specification

Power (DC input)

V+ ... User-supplied voltage that drives output circuitry.

V+ range ... 12-24VDC. (If using SIM8-AN-OUT, you must use a 24VDC supply.)

V+ current ... 1.8A @ 12VDC or 0.9A @ 24VDC; plus the sum of the load current on the PNP outputs.

Environmental

Operating temperature 32 to 122°F (0 to 50°C)

Storage temperature -22 to 185°F (-30 to 85°C)

Humidity ... 0 to 95% non-condensing

Dimensions (see dimension drawing on page 50).

Digital Inputs (SIM8-IN-EVM32)

Switching levels .. Low ≤ 1/3 V+ voltage; High ≥ 2/3 V+ voltage.

Voltage range ... Voltage range = 0-24VDC. Voltage of input signals should not exceed voltage level of V+.
(Input circuitry of EVM32 has diodes to protect against voltages that exceed V+, but
performance may degrade.)

Sinking/Sourcing Sinking: Connect jumper for selected SIM board to position 1.
Sourcing: Connect jumper for selected SIM board to position 3 (factory default).

Impedance ... 6 KΩ, minimum. Requires input current (sinking or sourcing) of 0.111mA per volt of user-
supplied voltage to V+ (e.g., 2.67mA if V+ = 24V).

Active level ... Set by the 6K controller (INLVL command setting) — default is active low, but can be set
to active high.

Input frequency ... 50 kHz (the maximum frequency is limited practically to 500 Hz by the 2 ms update rate of
the 6K controller).

Status ... Check with the TIO command. LED illuminates when at least [2/3 * V+] volts is present on
the input:
 • If sinking (jumper in position 1), the default LED state is off.

The LED illuminates when the voltage at the input is at least [2/3 * V+] volts.
 • If sourcing (jumper in position 3), the default LED state is on.

The LED goes off when the voltage at the input is below [1/3 * V+] volts.

Reed Relay Outputs (SIM8-OUT-RLY10)

Current rating ... Maximum of 10 Watts.
 • Switching voltage to 200VDC or 200VAC peak resistive
 • Switching current to 0.5A

Operate time, including bounce – typical ... 0.4 milliseconds

Release time – typical 0.1 milliseconds

Capacitance – typical 0.7 pF

Status.. Check with the TIO command. LED is on when the relay contact is closed.

6K Addendum (p/n 88-017657-01C) Page 49

Digital Outputs (SIM8-OUT-NPN and SIM8-OUT-PNP)

Sinking/Sourcing SIM8-OUT-NPN provides 8 sinking outputs.
SIM8-OUT-PNP provides 8 sourcing outputs.

Voltage (sinking — SIM8-OUT-NPN) Output voltage level is less than or equal to 0.4VDC when sinking up to 50mA.
(≤ 0.4 VDC for 50 mA).

Output voltage level is less than or equal to 2.5VDC when sinking up to 300mA.
(≤ 2.5 VDC for 300 mA).

Voltage (sourcing — SIM8-OUT-PNP) Output voltage level may be up to 2 volts less than the user-supplied voltage V+ when
sourcing up to 50mA.

Output voltage level may be up to 2.5 volts less than the user-supplied voltage V+ when
sourcing up to 300mA.

Current ... 300mA maximum per output; continuous duty at 50°C ambient temperature.
NOTE: For PNP outputs, the actual current is subject to derating, based on load current,
duty cycle, and number of simultaneously active outputs (see graph below). Improved
performance may be achieved by lowering the ambient temperature and/or staggering the
physical order of the outputs that are simultaneously active.

mA

350

300

250

200

150

100

180

240

300

0 10 20

Graph data is applicable to an EVM32 (cover installed) with PNP SIMs at 50 degrees C.

30 40 50 60 70 80 90

Limit to Number of
Simultaneously Active Outputs

Operation above 300mA is not recommended.

up to 2 up to 10
up to 8 up to 16

up to 32 up to 32

Contiguous * Alternately Staggered *

100

50

0

% Duty Cycle

L
o

ad
 C

u
rr

en
t

(m
A

)

* "Contiguous" means sequentially numbered I/O points on the EVM32
(for example: 1, 2, 3, 4, 5, 6, 7, 8, 9 ...).
"Alternately Staggered" means alternate even or odd numbered I/O points
(for example: 1, 3, 5, 7, 9, 11, 13, 15 ... or 2, 4, 6, 8, 10, 12, 14 ...)

Active level ... Set with the OUTLVL command. On power-up or reconnect, SIM8-OUT-NPN is set to
active low (OUTLVL0), and SIM8-OUT-PNP is set to active high (OUTLVL1).

Thermal shutdown Thermal shutdown protects the drive devices from excessive heat. The NPN SIM has 2
drive devices (4 output channels per device); the PNP SIM has 4 drive devices (2 output
channels per device). When a drive device reaches 165°C, it will shut down (PNP: shut
down two output channels; NPN: shut down four channels). The device driver will again
become active when its temperature cools to 150°C.

Short-circuit protection Digital outputs are short-circuit protected. Short-circuit protection only shuts down the
affected output channel. To recover, remove the fault and cycle power to the EVM32.

Status.. Check with the TIO command.
With default OUTLVL, LED is on when output is active (set to 1 with OUT command).

Analog Inputs (SIM8-AN-IN)

Input voltage range 12-bit A/D converter, ±10VDC; unipolar/bipolar range selectable ANIRNG command.
Unipolar: 0V to 10VDC, or 0V to 5V;
Bipolar: -10 to +10V (factory default), or -5V to +5V.

Input current (worst case load) Unipolar: 720µA @ 0V to 10VDC range; 360µA @ 0V to 5V range.
Bipolar: -1200µA @ -10V and 720µA @ +10V; -600µA @ -5V and 360µA @ +5V.

Input dynamic resistance Unipolar: 21KΩ; Bipolar: 16KΩ
Fault tolerance .. ±16.5V

Sample rate .. Each input requires 2ms (e.g., 4 ms for 2 inputs, 16ms for 8 inputs); therefore, to
maximize performance, you should disable unused inputs with ANIEN command.

Status.. Check with the TIO command.

Analog Outputs (SIM8-AN-OUT)

Output voltage range 10-bit DAC, ±10VDC, 8 channels total.

Load ... 2KΩ resistive at 5mA maximum.

Linearity error ... 0.66% (typical), 1.3% maximum, over the ±10VDC range.

Status.. Check with the TIO command or the TANO command.

Page 50 6K Addendum (p/n 88-017657-01C)

EVM32 Dimensions

6.330 [160.78]
3.991 [101.37]

2.189 [55.60]

2.244 [57.00]

4.110 [104.39]

1	 2	 3	 4	 5	 6	 7	 8

GND	 GND	 GND	 GND	 GND	 �GND	 GND	 GND GND	 GND	 GND	 GND	 GND	 �GND	 GND	 GND GND	 GND	 GND	 GND	 GND	 �GND	 GND	 GND GND	 GND	 GND	 GND	 GND	 �GND	 GND	 GND

9	 10	 11	 12	 13	 14	 15	 16 17	 18	 19	 20	 21	 22	 23	 24 25	 26	 27	 28	 29	 30	 31	 32 GND +V

+V +V

6K Addendum (p/n 88-017657-01C) Page 51

Installing the SIM Boards

Step 1: Remove the Cover

CAUTION:
EVM32 SIM boards are static sensitive.
Observe proper ESD handling precautions.

REMOVE POWER to the EVM32
baseboard before installing or removing SIM
boards.

Step 2: Install the SIM boards

Snap
into
place1

3
2

Notch

SIM Slot

Notch

SIM #2 (I/O points 9-16)

SIM #3 (I/O points 17-24)

SIM #4 (I/O points 25-32)

SIM #1 (I/O points 1-8)

Page 52 6K Addendum (p/n 88-017657-01C)

Step 3: (SIM8-IN-EVM32 only) Set the jumpers to select sinking or sourcing

Position 3

selects sourcing

(factory default setting)

Position 1

selects sinking

3 2 1

JU1JU2JU3JU4

NOTE:	The jumper setting affects only the digital input SIM
(SIM8-IN-EVM32).

SIM #4

(25-32)

SIM #3

(17-24)

SIM #2

(9-16)

SIM #1

(1-8)

Step 4: Replace the cover and label the SIM locations

SIM Board Color Label

SIM8-IN-EVM32 (digital inputs) Red 8 IN
SIM8-OUT-NPN (digital outputs, sinking) Blue 8 OUT (NPN)
SIM8-OUT-PNP (digital outputs, sourcing) Blue 8 OUT (PNP)
SIM8-OUT-RLY10 (reed relay outputs) Blue RELAY
SIM8-AN-IN (analog inputs) Green ANALOG IN
SIM8-AN-OUT (analog outputs) Black ANALOG OUT

6K Addendum (p/n 88-017657-01C) Page 53

Electrical Connections

! CAUTION !

 Remove power to the 6K controller and the EMV32 baseboard before:

• Installing or removing SIM boards on the EVM32 baseboard

• Connecting or disconnecting the EVM32 baseboard to the 6K controller or to
other EVM32 units

• Connecting inputs and outputs to the EVM32

Connection to the 6K controller and between EVM32 I/O bricks

If the EVM32 I/O brick is disconnected (or if it loses power), the 6K will perform a kill (all motion and
program execution on all tasks) and set error bit #18 (reported with the TER, TERF and ER commands).
The 6K will remember the brick configuration (volatile memory) in effect at the time the disconnection
occurred. When you reconnect the I/O brick, the controller checks to see if anything changed (SIM by
SIM) from the state when it was disconnected. If an existing SIM slot is changed (different SIM, vacant
SIM slot, or jumper setting), the controller will set the digital input SIMs and digital output SIMs to
factory default INEN and OUTLVL settings, respectively. If a new SIM is installed where there was none
before, the new SIM is auto-configured to factory defaults.

When the 6K powers up and detects a digital output SIM on a EVM32, it will set the active level
(OUTLVL command) according to the type of SIM. OUTLVL0, active low, is selected for NPN SIMs;
OUTLVL1, active high, is selected for PNP SIMs.

To check the status of one or more EVM32 I/O bricks, use the TIO command.

2-foot (0.61 m) cable is
provided with the baseboard
(EVM32-BASE).
Optional 100-foot cable
is available.

Connect to the 6K’s “EXPANSION I/O”
connector (use the provided cable).

EVM32 Brick #2
(2nd unit in serial chain)

EVM32 Brick #1
(1st unit in serial chain)

Page 54 6K Addendum (p/n 88-017657-01C)

24VDC power input

V+V+

V+GND

Power Supply
12-24VDC
(If using a SIM8-AN-OUT SIM, you
must use 24VDC)

1.8A @ 12VDC or 0.9A @ 24VDC;
plus the sum of the load current on
the SIM8-OUT-PNP outputs.

Connect to V+

Connect to GND

Reed Relay Outputs (SIM8-OUT-RLY10)

��������	�

��	��

�����

����	�
��
�����

�������������

� �

��
��

����	�

�������������� ��!�	����
"�		�����# �$��������� �%
&������ �$��������
��
�'(
����������) �
���
	�����
 ���	�
����"����"��#���$����	%�

*�����
�����"� ��

��

+�����

���
���

,��

�%*%

6K Addendum (p/n 88-017657-01C) Page 55

Digital Inputs (SIM8-IN-EVM32)

Sinking
(connecting to a
sourcing output)

������

'����!

��	
��
��

�	��
	

()

�)

)*�)
+�

,�-)
+�

)
.
/
/

�
0

)/�/
+�

�	�
'��

�	�
'��

�	�
'��

�����

'����!
1���������

�����
1���������

(2

3)
'��

	����

�

�

�

(2

4/�)
+�

*/�/
+�

)-�*
+��	�
'��

��������
������

�)*
��
*5(�1"

26

2

7

Sourcing
(connecting to a
sinking output)

��	
��
��

�	��
	

�����

	����

)*�)
+�

,�-)
+�

)
.
/
/

�
0

)/�/
+�

������

'����!

8�
������
	8���!

��
����
��
	��9
��

���	�
4 :
�&
��������

�	�
'����!

'����!
1���������

�����
1���������

(2

3)
'��

�

�

�

(2

4/�)
+�

*/�/
+�

)-�*
+�

�	�
'��

�	�
'��

�	�
'��

2

7

��������
������

�)*
��
*5(�1"

26

Interrelationships

Active Level * Jumper Selection * Switch Voltage at Input LED IN/TIN/TIO Report
INLVL0 (active low) Position 3 (sourcing) Open ≥ 2/3 of V+ On 0

INLVL0 (active low) Position 3 (sourcing) Closed < 1/3 of V+ Off 1

INLVL1 (active high) Position 3 (sourcing) Open ≥ 2/3 of V+ On 1

INLVL1 (active high) Position 3 (sourcing) Closed < 1/3 of V+ Off 0

INLVL0 (active low) Position 1 (sinking) Open < 1/3 of V+ Off 1

INLVL0 (active low) Position 1 (sinking) Closed ≥ 2/3 of V+ On 0

INLVL1 (active high) Position 1 (sinking) Open < 1/3 of V+ Off 0

INLVL1 (active high) Position 1 (sinking) Closed ≥ 2/3 of V+ On 1

* Factory default: INLVL0 (active low) and jumper in position 3 (sourcing). Jumper location is illustrated on page 52.

Page 56 6K Addendum (p/n 88-017657-01C)

Digital Outputs (SIM8-OUT-NPN and SIM8-OUT-PNP)

SIM-OUT-NPN
(sinking outputs)

��������	�

��	��

�����

����	�
��
�����

�������������

� �

��
��

�	���#
�����"� ��

*�����
�����"� ��

��

+�����

���
���

���

���������
��
	����

���������������������
��������� �� �
�!
��
 �
�������������"#�

���
���

Fly-Back Diodes: The SIM card is sent from the factory with jumper JU1 in the “no connect” position (fly-back
diodes not used). If you move the jumper to the left-hand position, eight fly-back diodes are invoked, one for
each of the 8 output channels. CAUTION: If the power supply voltage for the remote device (to which the
outputs are connected) is greater than the power supply voltage for the EVM32, do not use the fly-back diodes.

NPN

JU
1

Move the jumper to the
left-hand position to use
internal fly-back diodes.NPN

JU
1

Factory default jumper
position is "no connect"
(no internal diodes used).

External Diodes: Use an external diode when driving inductive loads (you can do this only if you have not
invoked the fly-back diodes with jumper JU1). Connect the diode in parallel to the inductive load.

SIM8-OUT-PNP
(sourcing outputs)

��������	�

��	��

�����

�	���#

����	�
��
�����

�������������

� �

��
��

�	���#
�����"� ��

*�����
�����"� ��

�������

���
���

��

+�����

6K Addendum (p/n 88-017657-01C) Page 57

Analog Inputs (SIM8-AN-IN)

�����

�����
1���������)*�.
+�

)�/
;�

-�,<
+�

.�)*
+�

�*

�)
����
���������
��
	

��� ��!�"

'����!

��=���
������

%������

��������

�00

��

(����=�
��&������

�4

>��!
���9 �5

���9 >��!

?>
���

1$��

�)
@
%������?��������
�����8
�*
@
�����
;��
�����8
�4A
�5
@

?>
�����8

'��
1���������

Analog Outputs (SIM8-AN-OUT)

��������	�

��	��

����	�
��
�����

����
�������

� �

��
��

�	���#
�����"� ��

-�
��$�*�����
�����"� �����./��0��

��

+�����

���
���

���
���

1)-�)
�%

��2����� #
,'3��-

Page 58 6K Addendum (p/n 88-017657-01C)

New Commands

ANO Set Analog Output Value
Type Output
Syntax <!>ANO<.i>=<r>
Units B = I/O brick number

i = input output location on brick “B”
r = volts

Range B = 1-8 (depending on I/O brick configuration)
i = 1-32 (depending on I/O brick configuration)
r = -10.00 to +10.00 (or 0 to 4095 in PLC mode)

Default 0.0
Response n/a

See Also [ANO], TANO, TIO

Product Rev

6K 5.1

Use the Analog Output (ANO) command to assign a voltage of an analog output associated with
an analog output SIM.

Performance: Each analog output channel is updated once every 16ms (2ms per analog input
channel). Each DAC has 10-bit granularity, giving approximately 20 mV/bit over the 20 volt
range.

PLC Mode: When commanding an analog output using PLC mode, the raw DAC value must
be used. To calculate what value to program, use the following formula or table:

ANO Value = (Vout + 10) x 4095 / 20

Vout DAC Value

-10V 0
-5V 1024
0V 2048
+5V 3071
+10V 4095

Example:
1ANO.9=8.5 ; Command 8.5 volts on analog output 9, I/O brick 1 (analog

; output SIM must be present in slot 2 of I/O brick 1)

[ANO] Analog Output Value
Type Outputs; Assignment or Comparison
Syntax See below
Units Voltage
Range -10.00VDC to +10.00VDC
Default n/a
Response n/a

See Also ANO, TANO, TIO

Product Rev

6K 5.1

Use the ANO operand to assign the voltage level present at one of the analog outputs to a
variable, or to make a comparison against another value.

The ANO value is derived from the voltage applied to the corresponding analog output and
ground. The analog value is determined from a 10-bit digital-to-analog converter and the value
set with the ANO command. The range of the ANO operand is -10.00VDC to +10.00VDC.

Syntax: VARn=ANO.i where “n” is the variable number, “” is the number of the I/O
brick, and “i” is I/O brick address where the analog output resides; or ANO can be
used in an expression such as IF(1ANO.2=2.3). If no brick identifier () is
provided, it defaults to 1.

6K Addendum (p/n 88-017657-01C) Page 59

PLC Mode: When assigning or comparing an analog output value in PLC mode, the raw DAC
value must be used. To calculate what this value will be, use the following formula or table:

ANO Value = (Vout + 10) x 4095 / 20

Vout DAC Value

-10V 0
-5V 1024
0V 2048
+5V 3071
+10V 4095

Example:
IF(1ANO.9=8.5) ; If the commanded analog output is greater than 8.5
 WRITE "HIGH" ; write warning to screen
 NIF
IF(1ANO.9<-8.5) ; If the commanded analog output is less than -8.5
 WRITE "LOW" ; write warning to screen
 NIF

TANO Transfer Analog Output Value
Type Transfer
Syntax <!>TANO.i
Units B = I/O brick number

i = input output location on brick “B”
Range B = 1-8 (depending on I/O brick configuration)

i = 1-32 (depending on I/O brick configuration)
Default n/a
Response 1TANO.9: *1TANO.9=0.00

See Also [ANO], ANO, TIO

Product Rev

6K 5.1

Use the Transfer Analog Output (TANO) command to report the value of an analog output
channel.

Example:
>1TANO.9 ; Report the commanded analog output voltage at bit 9 of

; I/O brick 1.
*1TANO.9=0.00

KIOEN Kill on EVM32 I/O Brick Disconnect – Enable
Type Controller Configuration; Inputs; Outputs
Syntax <!>KIOEN
Units n/a
Range b = 0 (disable) or 1 (enable)
Default 1
Response KIOEN: *KIOEN1

See Also ERROR, TER, TIO

Product Rev

6K 5.1

The KIOEN command allows you to control the functionality of the 6K when an EVM32 I/O
failure has been detected (cause could be cable disconnection, or loss of power on the EVM32
I/O brick). The options are as follows:

• KIOEN1 (factory default): The 6K will perform a kill (all motion and program execution
on all tasks) if an EVM32 I/O failure is detected.

• KIOEN0: The 6K will not perform a kill. (SEE WARNING NOTE BELOW)

Regardless of the state of the KIOEN command, you can enable error bit 18 (ERROR.18-1) and
use an error program to respond to an EVM32 I/O failure. Note that when operating in the

Page 60 6K Addendum (p/n 88-017657-01C)

KIOEN0 mode, the branch to the error program is a GOSUB (instead of a GOTO branch under
the factory default KIOEN1 mode).

WARNING

If you use the KIOEN0 mode (no kill if EVM32 I/O failure), bear in mind that when an
EVM32 I/O failure occurs, the state of any external conditions becomes unknown to the
6K controller. For example, if an input on brick 2 is defined as a hardware end-of-travel
limit, and if brick 2 loses power or disconnected from the 6K, the 6K will never see a state
change on the limit.

The KIOEN0 mode is designed for use during system setup (for example, if you will be
connecting and disconnecting I/O bricks in the process of wiring and programming your
system).

Therefore, to help prevent damage to equipment and serious injury to personnel, we
recommend leaving KIOEN at its default state (KIOEN1) during normal operation of your
motion control system.

Changes to TIO:

In addition to the new commands (ANO, [ANO], and TANO), the TIO report will include analog
output information similar to the way it displays analog input data. An example follows where
brick 1 has an analog output SIM in slot 3 (voltage commanded on all outputs is +0.01V):

*BRICK 1: SIM Type Status Function
* 1-8: NO SIM PRESENT
* 9-16: NO SIM PRESENT
* 17-24: ANALOG OUTPUTS +0.01, +0.01, +0.01, +0.01, +0.01, +0.01, +0.01, +0.01
* 25-32: NO SIM PRESENT

Synchronous Serial Bus Interface (SSBI)

As of OS revision 5.2.0, the “Synch” hardware option is available for all 6K controller models
(6K2-SYNC, 6K4-SYNC, and 6K8-SYNC). The Synch option allows you to connect up to
eight 6K controllers together on a synchronized serial bus interface. New commands
associated with the Synch option are:

SYNCH Serial Synchronization Bus Enable
[SYNCH] Serial Synchronization Address (assignment operand)
VARSHI Shared Input Variable
VARSHO Shared Output Variable

For details on the Synch option, refer to the 6K Synchronization Bus Guide (part number
88-018179-01). To order this option, contact your local automation technology center (ATC)
or distributor.

	OS 5.1.0 Firmware Enhancements
	New Commands
	PGOWHN	Path Conditional Go
	PLC Scan Mode Enhancements
	[SCAN]	Scan Time
	TNT	Transfer Ethernet Status
	NTSFS	Ethernet Send Fast Status Packet
	NTFEN	Ethernet Communication Enable
	DSTALL	Drive Input Stall Detection
	TSC	Transfer Controller Status
	TSCF	Transfer Controller Status (full-text report)
	[SC]	Controller Status
	INVARI	Map Inputs to Integer Variable

	Virtual Inputs
	Contouring Enhancements
	Ethernet Enhancements
	Gemini Drive Stall Detection
	TAS, TASX, TFS – Added Status
	Controller Status Commands
	Mapping Inputs to Integer Variables
	String Variable (VARS) Changes
	More Following Master Options
	Increased Memory Capacity
	EVM32-Related Enhancements

	EVM32 Enhancements
	EVM32 Description
	EVM32 Specifications
	EVM32 Dimensions
	Installing the SIM Boards
	Electrical Connections
	Connection to the 6K controller and between EVM32 I/O bricks
	24VDC power input
	Reed Relay Outputs (SIM8-OUT-RLY10)
	Digital Inputs (SIM8-IN-EVM32)
	Digital Outputs (SIM8-OUT-NPN and SIM8-OUT-PNP)
	Analog Inputs (SIM8-AN-IN)
	Analog Outputs (SIM8-AN-OUT)

	New Commands
	ANO	Set Analog Output Value
	[ANO]	Analog Output Value
	TANO	Transfer Analog Output Value
	KIOEN	Kill on EVM32 I/O Brick Disconnect – Enable

	Communications Server (COM6SRVR) Enhancements
	Connection Examples
	How to Disconnect
	Background Commands
	RS-232 Methods
	Ethernet Methods
	Ethernet Properties
	Error Codes
	Programming Notes

	Ethernet Configuration
	Direct Connection to 6K
	Network Connection to 6K
	ARP –S Static Mapping Procedure

	Servo Tuning Procedure
	Encoder Schematic Corrections
	Ship Kit Changes

