
Effective: April 2, 2002

p/n 88-020680-01 A

COM6SRVR
User's Guide for
Gemini & 6K Series
Products

Automation

+ 24V
D 24V R
T

RELAY CO
RELAY

N.O

R
S

-2
3
2
/4

8
5

D
R

IV
E

I/O

R
S

-2
3
2

E
X

P
A

N
S

IO
N

I/O

M
A

S
T

E
R

E

N
C

O
D

E
R

M
O

T
O

R

F
E

E
D

B
A

C
K

GV6KGeminiServo
E

T
H

E
R

N
E

T

North America and Asia:
Compumotor Division of Parker Hannifin
5500 Business Park Drive
Rohnert Park, CA 94928
Telephone: (800) 358-9070 or (707) 584-7558
Fax: (707) 584-3793
FaxBack: (800) 936-6939 or (707) 586-8586
e-mail: tech_help@cmotor.com
Internet: http://www.compumotor.com

Europe (non-German speaking):
Parker Digiplan
21 Balena Close
Poole, Dorset
England BH17 7DX
Telephone: +44 (0)1202 69 9000
Fax: +44 (0)1202 69 5750

Germany, A ustria, Switzerland:
HAUSER Elektronik GmbH
Postfach: 77607-1720
Robert-Bosch-Str. 22
D-77656 Offenburg
Telephone: +49 (0)781 509-0
Fax: +49 (0)781 509-176

Technical Assistance Contact your local automation technology center (ATC) or distributor, or ...

Automation
E-mail: Tech_Help@cmotor.com

Tech nical Support

The COM6SRVR Communications Server products and the information in this user guide are the proprietary property of Parker Hannifin
Corporation or its licensers, and may not be copied, disclosed, or used for any purpose not expressly authorized by the owner thereof.

Since Parker Hannifin constantly strives to improve all of its products, we reserve the right to change this user guide and software and
hardware mentioned therein at any time without notice.

In no event will the provider of the equipment be liable for any incidental, consequential, or special damages of any kind or nature
whatsoever, including but not limited to lost profits arising from or in any way connected with the use of the equipment or this user guide.

© 2001, Parker Hannifin Corporation

All Rights Reserved

User Information

WARNING
Gemini, 6K, and Gem6K Series products are used to control electrical and
mechanical components of motion control systems. You should test your
motion system for safety under all potential conditions. Failure to do so
can result in damage to equipment and/or serious injury to personnel.

! !

Motion Planner is a trademark of Parker Hannifin Corporation.
Microsoft and MS-DOS are registered trademarks, and Windows, Visual Basic, and Visual C++ are trademarks of Microsoft Corporation.

Communications Server (COM6SRVR)

Programming Samples
Examples may be installed
with Motion Planner and are
located in the Motion Planner
directory
(\Motion Planner\Samples):
 • Visual Basic 5.0 sample
 • Visual C++ sample
 • Delphi 3.0 sample

NOTE: The samples are not
installed as part of the
“typical” installation; use the
“custom” installation option.

The Compumotor Communications Server (COM6SRVR.EXE) is a 32-bit OLE automation
server which facilitates communications between 6K controllers, Gemini controllers (i.e.
GV6K, GT6K, GV6, and GT6), and PC software applications. It is compatible with any 32-
bit software application or programming environment which can utilize an OLE automation
component, including:

• Visual Basic
• Visual C++
• Delphi
• Software packages that support Microsoft’s Component Object Model (COM):

− Wonderware’s Factory Suite 2000
− National Instruments LabVIEW

The Motion Planner installation program installs COM6SRVR.EXE in the Windows\System
(Windows 95/98) or WinNt\System32 (Windows NT/2000) directory.

To begin communications, an application simply needs to request a connection to a 6K
controller or Gemini controller through the Communications Server. The Communications
Server manages the actual connection to each controller, and can feed information from a
particular controller to all client applications which require the information.

Although the Communications Server only makes one connection to each 6K or Gemini, it can
feed the information from that one connection to multiple client applications. This means, for
example, that a terminal application created in Visual Basic and a terminal in Motion Planner
can be connected to the same 6K or Gemini at the same time. They will both receive the same
responses coming from the controller, instead of competing for the data. It is also possible for
an application to request connections to multiple controllers via the Communications Server.
Each connection can be either Ethernet or RS-232 for the 6K, GV6K, and GT6K. The GV6
and GT6 support RS-232 only.

For RS-232 connections, you need to specify the PC COM port on which to connect. For
Ethernet connections, you need to specify the controller’s IP address. Each controller is set
with a default IP address (192.168.10.30). If there is an address conflict with other devices on
the network, you can change the 6K's or Gem6K's address with the NTADDR command. To do
this you must cycle power or issue a reset to invoke the new address (refer to the Ethernet
configuration procedures in the 6K Programmer's Guide or the Gem6K Programmer's Guide).
The Communications Server can handle up to two RS-232 connections and unlimited Ethernet
connections (to different IP addresses).

The syntax for requesting a connection to the Communications Server varies depending on the
programming environment being used. Below are examples in the Visual Basic, Visual C++,
and Delphi programming formats (refer also to the samples in the Motion Planner directory).
To disconnect, refer to “How to Disconnect” instructions on page 3.

COM6SRVR Application Programming Interface (API): Once the proper object variable has
been created and a connection is established, there is a standard set of methods and properties
which the client application(s) can access.

• For 6K and Gem6K RS-232 methods, refer to page 4
• For GV6 and GT6 RS-232 methods, refer to page 9.
• For 6K Ethernet methods and properties, refer to page 12.
• For Gem6K Ethernet methods and properties, refer to page 33.

COM6SRVR User’s Guide 1

Visual Basic
Connection Example

'create an object variable, initialize it to a
'6K Ethernet interface and make a connection

Dim commserver As Object
Dim ConnectReturnValue As Integer
Set commserver = CreateObject("COM6SRVR.NET")
ConnectReturnValue = commserver.Connect("192.168.10.30")

'---

'create an object variable, initialize it to a
'RS-232 interface and make a connection to PC COM1

Dim MyMachine As Object
Dim ConnectReturnValue As Integer
Set MyMachine = CreateObject("COM6SRVR.RS232")
ConnectReturnValue = MyMachine.Connect(1)

NOTE: When using VBScript, the syntax is identical to the example above, except that the
variable declaration should omit the “As Object” and “As Integer” keywords.

Visual C++ Connection
Example

/* create an object variable, initialize it to a
Gem6K Ethernet interface and make a connection */

INet commserver;
commserver.CreateDispatch ("COM6SRVR.GEM6K");
int ConnectReturnValue = commserver.Connect("192.168.10.30");

/*==*/

/* create an object variable, initialize it to a
RS-232 interface and make a connection to COM2 */

IRS232 MyMachine;
MyMachine.CreateDispatch ("COM6SRVR.RS232");
int ConnectReturnValue = MyMachine.Connect(2);

Delphi Connection
Example

unit Unit1;

interface

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
 StdCtrls, ComObj;

type
 TForm1 = class(TForm)
 Button1: TButton;
 procedure FormCreate(Sender: TObject);
 procedure Button1Click(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 CommServer: Variant; { Create the object variable }
 end;

var
 Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.FormCreate(Sender: TObject);
begin
 { Initialize CommServer object to a 6K Ethernet interface }
 CommServer := CreateOleObject('COM6SRVR.NET');
 { For RS-232, use CommServer := CreateOleObject('COM6SRVR.RS232'); }
end;

procedure TForm1.Button1Click(Sender: TObject);
begin
 { Make a connection to the 6k Controller at IP 192.168.10.30 }
 CommServer.Connect('192.168.10.30');
 { To connect via RS-232 on COM2, use CommServer.Connect(2); }
end;

end.

COM6SRVR User’s Guide 2

How to Disconnect
The Communications Server is designed as an “EXE” (out-of-process) server rather than a
“DLL” (in-process) server. This means that it runs independently of the client application’s
process. This feature allows the same data from the Communications Server to be shared
among several clients. It also provides a more secure connection model by insulating the 6K
Communications Server from failure on any singular client.

With the use of an in-process server, the server itself runs in the client’s process. If the client
application fails or shuts down, the server will be shutdown along with the client. With the use
of an out-of-process server, the server runs independently of the client and is therefore
insulated from a failure in the client’s process. If a particular client application fails, the server
will continue to run and provide data to any other client applications requiring its service.

As an out-of-process server, the Communications Server does not shutdown until all client
applications have disconnected from the server. In many cases, a proper disconnect does not
take place if an unhandled error occurs in the client application and the program exits
abnormally. This means that care must be exercised on the part of the client program to
disconnect from the server on such occasions or when its services are no longer needed.

VB and VBScript For VB/VBScript applications, an object variable is typically released when the variable loses

scope. However, it is always a good practice to explicitly release the object by setting it to
nothing.

'assuming the commserver is an object variable
'representing a Communications Server connection

Set commserver = Nothing; 'free the object - disconnect from the server

C++ In C++, the same rule applies to the scope of an object variable, but again it is good
programming practice to explicitly release the object.
//assuming the commserver is an object variable
//representing a Communications Server connection

commserver.ReleaseDispatch(); // release the IDispatch connection

Delphi Again, in Delphi, the same rule applies.

{ assuming the CommServer is an object variable }
{ representing a Communications Server connection }

CommServer := UnAssigned; { release the connection }

Be Aware of
Background
Commands

During some operations in the Communications Server, it is necessary for the server to send
setup commands to the controller. These commands generally affect communication port
settings and are necessary for proper communications between the server and the controller.

The use of these commands may affect settings previously established in the controller by a
user program, so it may be necessary to adjust the settings after certain methods in the
Communications Server are exercised. The use of these commands will also affect the
command count data available in FastStatus Ethernet property.

The Communications Server methods which invoke background commands are:

RS-232 Methods: Connect, GetFile, SendFile, SendFileQuiet, and SendOS
Ethernet Methods: Connect, GetFile, SendFile, SendFileQuiet, SendFileBlocking

and SendFileBlockingQuiet.

For details on the background commands sent, refer to the description (below) for the
respective method.

COM6SRVR User’s Guide 3

COM6SRVR.RS232 Interface – RS-232 communication with 6K or Gem6K

RS-232 Methods
NOTE

This section covers RS-232 methods, there are no RS-232 properties for the Communications
Server.

Connect (port) Description: The Connect method opens an RS-232 connection.

Visual Basic: object.Connect(port as Integer) As Integer
Visual C++: short object.Connect(short commport)
Delphi: Smallint_variable := Object_variable.Connect(port as

Smallint)
Parameter: port (commport) Short Integer

 Represents the PC’s COM port number
 (1-6).

Return Type: Short Integer.
If the connection is successfully opened, the method
returns a positive value representing the number of
connected clients. If the connection is unsuccessful,
then an error code is returned (see table on page 54).

Remarks: The Server can handle up to two RS-232 connections. The
RS232 server assumes 9600 Baud operation.

Background Commands: After a successful connection is
made, a “PORT0:” command is sent to the controller.

Flush Description: The Flush method removes all characters from the
client’s receive buffer. This method allows the
programmer to clear the receive buffer prior to making
a read.

Visual Basic: object.Flush
Visual C++: void object.Flush()
Delphi: Object_variable.Flush
Parameter : NONE
Return Type: NONE
Remarks: USE WITH CAUTION. This method allows the programmer to

clear the receive buffer, such that a subsequent Read
call can yield a clean response. However, data arriving
in the receive buffer is asynchronous to the
application program and a thorough understanding of how
the application program is structured is necessary to
use this method correctly (for example, it would not be
beneficial to Flush the buffer if only a partial
response has been received).

GetFile (filename) Description: The GetFile method is used to upload programs currently
stored in the controller.

Visual Basic: object.GetFile(filename as String) As Long
Visual C++: long object.GetFile(LPCTSTR lpFileName)
Delphi: Longint_variable := Object_variable.GetFile(filename as

String)
Parameter: filename String.

Represents the name of the file to store the
uploaded programs. If the filename is an
empty string, then the user will be prompted
for the filename.

Return Type: Long integer.
The method returns a positive value if the operation is
successful; otherwise, it returns an error code (see
table on page 54).

COM6SRVR User’s Guide 4

RS-232 communication with 6K or Gem6K

Remarks: Background Commands: At the beginning of a file upload
operation, these commands are sent to the controller:
 !PORT0
 !ECHO0
 !ERRLVL0
 !EOT1,0,0
 !EOL10,0,0
 !TDIR

For each program selected for upload, a “!TPROG”
command is also sent to the controller.

After the upload process is completed, these commands
are sent to the controller:
 !PORT0
 !EOT13,0,0
 !EOL13,10,0
 !ERRLVL4
 !ECHO1

Read () Description: The Read method retrieves command responses from the
controller.

Visual Basic: object.Read() As String
Visual C++: object.CString Read()
Delphi: String_variable := Object_variable.Read
Parameter: NONE
Return Type: String.

The Read method does not wait for incoming responses
from the controller. It returns immediately with a
string containing the controller’s response at the time
of the request. If no response is available, this
method will return an empty string. The Read method
response is limited to 256 characters. If the response
is longer than 256 characters, the excess characters
will remain in the COM6SRVR buffer. Multiple reads are
necessary for long responses.

Remarks: You should disable Timer events in VB5 and VBScript
when reading and writing to the COM6SRVR (see Microsoft
Support Online Article ID176399).

SendFile (filename) Description: The SendFile method is used to download program files
to the controller.

Visual Basic: object.SendFile(filename as String) As Long
Visual C++: long object.SendFile(LPCTSTR lpFileName)
Delphi: Longint_variable := Object_variable.SendFile(filename

as String)
Parameter: filename String.

Represents the name of the program file
(containing 6K or Gem6K programs/code) to be
downloaded. If the filename is an empty
string, then the user will be prompted for
the filename.

Return Type: Long integer.
The method returns a positive value if the operation is
successful; otherwise, it returns an error code (see
table on page 54).

Remarks: To speed up downloads, the SendFile method strips
comments from the downloaded code. That is, all text
between the comment delimiter (semi-colon) and the
command delimiter (carriage return or line feed) is
removed.

NOTE: The SendFile method should be called when motion
is not in progress and programs are not running.

Background Commands: At the beginning of a file
download operation, these commands are sent to the
controller:

COM6SRVR User’s Guide 5

RS-232 communication with 6K or Gem6K

 !PORT0
 !ECHO0
 !ERRLVL0
 !EOT1,0,0
 !EOL10,0,0
 !TDIR

After the download process is completed, these commands
are sent to the controller:

 !PORT0
 !EOT13,0,0
 !EOL13,10,0
 !ERRLVL4
 !ECHO1

NOTE: If the download process is canceled, an "END"
command is sent to the controller.

SendFileQuiet (filename) Description: The SendFileQuiet method is used to download program
files to the controller while suppressing the download
status dialog message.

Visual Basic: object.SendFileQuiet(filename as String) As Long
Visual C++: long object.SendFileQuiet(LPCTSTR lpFileName)
Delphi: Longint_variable :=

Object_variable.SendFileQuiet(filename as String)
Parameter: filename String.

Represents the name of the program file
(containing 6K or Gem6K programs/code) to be
downloaded. If the filename is an empty
string, then the user will be prompted for
the filename.

Return Type: Long integer.
The method returns a positive value if the operation is
successful; otherwise, it returns an error code (see
table on page 54).

Remarks: To speed up downloads, the SendFileQuiet method strips
comments from the downloaded code. That is, all text
between the comment delimiter (semi-colon) and the
command delimiter (carriage return or line feed) is
removed.

NOTE: The SendFileQuiet method should be called when
motion is not in progress and programs are not running.

Background Commands: At the beginning of a file
download operation, these commands are sent to the
controller:

 !PORT0
 !ECHO0
 !ERRLVL0
 !EOT1,0,0
 !EOL10,0,0
 !TDIR

After the download process is completed, these commands
are sent to the controller:

 !PORT0
 !EOT13,0,0
 !EOL13,10,0
 !ERRLVL4
 !ECHO1

NOTE: If the download process is canceled, an "END"
command is sent to the controller.

COM6SRVR User’s Guide 6

RS-232 communication with 6K or Gem6K

SendOS (filename) Description: The SendOS method downloads the soft operating system

to a 6K or Gem6K controller.
Visual Basic: object.SendOS(filename as String) As Boolean
Visual C++: BOOL object.SendOS(LPCTSTR lpFileName)
Delphi: Boolean_variable := Object_variable.SendOS(filename as

String)
Parameter: filename String.

Represents the name of soft operating system
file. If filename is an empty string then
the user will be prompted for the operating
system file name.

Return Type: Boolean. (This method returns a Boolean value.)
The method returns a TRUE value if the operation is
successful; otherwise, a FALSE value is returned.

Remarks: After downloading a new operating system, the
appropriate NTFEN command must be sent to the
controller (see the 6K Command Reference or Gem6K
Command Reference) — this applies only if you will be
using Ethernet communication.

Background Commands: Before the operating system
download process, COM6SRVR sends several setup commands
to the controller, followed by a RESET command.
NOTE: The download process uses a baud rate of 38400.
This allows for fast download times. After the
download process is completed, the previous baud rate
is reinstated. The Communications server ALWAYS uses
9600 baud for normal communications.

SetBpsRate (baudrate) Description: The SetBpsRate method sets the baudrate transmission
for the Com6srvr RS232 interface.

Visual Basic: object.SetBpsRate(baudrate as Integer) As Long
Visual C++: object.CString SetBpsRate(int baudrate)
Delphi: String_variable := Object_variable.SetBpsRate(baudrate

as Integer)
Parameter: baudrate Integer

An integer value representing the baudrate
that Com6srvr will transmit at.

Return Type: Long integer.
The SetBpsRate method returns the baudrate that was
set.

Remarks: In order to communicate with a 6K or Gem6K, you must
set the baudrate in the Com6srvr and the baudrate in
the controller to the same value. Use the 6K command
BAUD to set the controller baudrate before changing the
Com6srvr baudrate.

COM6SRVR User’s Guide 7

RS-232 communication with 6K or Gem6K

Write (cmd) Description: The Write method is used to send commands to the

controller.
Visual Basic: object.Write(cmd as String) As Long
Visual C++: long object.Write(LPCTSTR cmd)
Delphi: Longint_variable := Object_variable.Write(cmd as

String)
Parameter: cmd String

A string of commands to be sent. Multiple
commands can be sent, but each command
should be separated with a valid command
delimiter (colon, carriage return, or line
feed). The command string should be limited
to 256 characters or less. Larger command
strings may cause an overflow in the
controller’s command buffer.

Return Type: Long integer.
This method returns a positive value corresponding to
the number of bytes sent, or a negative error code (see
table on page 54).

Remarks: You should disable Timer events in VB5 and VBScript
when reading and writing to the COM6SRVR (see Microsoft
Support Online Article ID176399).

COM6SRVR User’s Guide 8

COM6SRVR.GEMINI Interface – RS-232 communication with GV6 or GT6

RS-232 Methods
NOTE

This section covers RS-232 methods, there are no RS-232 properties for the Communications
Server.

The GV6 and GT6 use a binary language and the COM6SRVR.GEMINI interface incorporates a
binary to ASCII translator to convert binary commands into 6000 ASCII equivalents.

Connect (port) Description: The Connect method opens an RS-232 connection.
Visual Basic: object.Connect(port as Integer) As Integer
Visual C++: short object.Connect(short commport)
Delphi: Smallint_variable := Object_variable.Connect(port as

Smallint)
Parameter: port (commport) Short Integer

 Represents the PC’s COM port
 number (1-6).

Return Type: Short Integer.
If the connection is successfully opened, the method
returns a positive value representing the number of
connected clients. If the connection is unsuccessful,
then an error code is returned (see table on page 54).

Remarks: The Server can handle up to two RS-232 connections. The
RS232 server assumes 9600 Baud operation.

Flush Description: The Flush method removes all characters from the
client’s receive buffer. This method allows the
programmer to clear the receive buffer prior to making
a read.

Visual Basic: object.Flush
Visual C++: void object.Flush()
Delphi: Object_variable.Flush
Parameter : NONE
Return Type: NONE
Remarks: USE WITH CAUTION. This method allows the programmer to

clear the receive buffer, such that a subsequent Read
call can yield a clean response. However, data arriving
in the receive buffer is asynchronous to the
application program and a thorough understanding of how
the application program is structured is necessary to
use this method correctly (for example, it would not be
beneficial to Flush the buffer if only a partial
response has been received).

GetFile (filename) Description: The GetFile method is used to upload programs currently
stored in the controller.

Visual Basic: object.GetFile(filename as String) As Long
Visual C++: long object.GetFile(LPCTSTR lpFileName)
Delphi: Longint_variable := Object_variable.GetFile(filename as

String)
Parameter: filename String.

Represents the name of the file to store the
uploaded programs. If the filename is an
empty string, then the user will be prompted
for the filename.

Return Type: Long integer.
The method returns a positive value if the

COM6SRVR User’s Guide 9

RS-232 communication with GV6 or GT6

operation is successful; otherwise, it
returns an error code (see table on page
54).

Remarks: Background Commands: At the beginning of a file upload
operation, the "!TDIR" command is sent to the
controller:

For each program selected for upload, a "!TPROG"
command is also sent to the controller.

Read () Description: The Read method retrieves command responses from the
controller.

Visual Basic: object.Read() As String
Visual C++: object.CString Read()
Delphi: String_variable := Object_variable.Read
Parameter: NONE
Return Type: String.

The Read method does not wait for incoming responses
from the controller. It returns immediately with a
string containing the controller’s response at the time
of the request. If no response is available, this
method will return an empty string. The Read method
response is limited to 256 characters. If the response
is longer than 256 characters, the excess characters
will remain in the COM6SRVR buffer. Multiple reads are
necessary for long responses.

Remarks: You should disable Timer events in VB5 and VBScript
when reading and writing to the COM6SRVR (see Microsoft
Support Online Article ID176399).

SendFile (filename) Description: The SendFile method is used to download program files
to the controller.

Visual Basic: object.SendFile(filename as String) As Long
Visual C++: long object.SendFile(LPCTSTR lpFileName)
Delphi: Longint_variable := Object_variable.SendFile(filename

as String)
Parameter: filename String.

Represents the name of the program file
(containing GV6 or GT6 programs/code) to be
downloaded. If the filename is an empty
string, then the user will be prompted for
the filename.

Return Type: Long integer.
The method returns a positive value if the operation is
successful; otherwise, it returns an error code (see
table on page 54).

Remarks: To speed up downloads, the SendFile method strips
comments from the downloaded code. That is, all text
between the comment delimiter (semi-colon) and the
command delimiter (carriage return or line feed) is
removed.

NOTE: The SendFile method should be called when motion
is not in progress and programs are not running.

NOTE: If the download process is canceled, an "END"
command is sent to the controller.

COM6SRVR User’s Guide 10

RS-232 communication with GV6 or GT6

SendOS (filename) Description: The SendOS method downloads the soft operating system

to a GV6 or GT6 controller.
Visual Basic: object.SendOS(filename as String) As Boolean
Visual C++: BOOL object.SendOS(LPCTSTR lpFileName)
Delphi: Boolean_variable := Object_variable.SendOS(filename as

String)
Parameter: filename String.

Represents the name of soft operating system
file. If filename is an empty string then
the user will be prompted for the operating
system file name.

Return Type: Boolean. (This method returns a Boolean value.)
The method returns a TRUE value if the operation is
successful; otherwise, a FALSE value is returned.

Remarks: Background Commands: After the operating system
download process, COM6SRVR sends a RESET command.

Write (cmd) Description: The Write method is used to send commands to the
controller.

Visual Basic: object.Write(cmd as String) As Long
Visual C++: long object.Write(LPCTSTR cmd)
Delphi: Longint_variable := Object_variable.Write(cmd as

String)
Parameter: cmd String.

A string of commands to be sent. Multiple
commands can be sent, but each command
should be separated with a valid command
delimiter (colon, carriage return, or line
feed). The command string should be limited
to 256 characters or less. Larger command
strings may cause an overflow in the
controller’s command buffer.

Return Type: Long integer.
This method returns a positive value corresponding to
the number of bytes sent, or a negative error code (see
table on page 54).

Remarks: You should disable Timer events in VB5 and VBScript
when reading and writing to the COM6SRVR (see Microsoft
Support Online Article ID176399).

COM6SRVR User’s Guide 11

COM6SRVR.NET Interface – Ethernet communication with 6K

Ethernet Methods

Connect (netaddress) Description: The Connect method opens a connection to a 6K
controller

Visual Basic: object.Connect(netaddress as String) As Integer
Visual C++: short object.Connect(LPCTSTR netaddress)
Delphi: Smallint_variable := Object_variable.Connect(netaddress

as String)
Parameter: netaddress String.

Represents the target controller’s IP
address.

Return Type: Short Integer.
If the connection is successfully opened, the method
returns a positive value representing the number of
connected clients. If the connection is unsuccessful,
then an error code is returned (see table on page 54).

Remarks: The Server can handle unlimited Ethernet connections
(to different IP addresses). The 6K takes up to one
minute for an Ethernet connection to truly expire and
be available for a new connection.

Background Commands: After a successful connection is
made, the following commands are sent to the
controller:
 !PORT0
 !ERRLVL4
 !EOT13,0,0
 !EOL13,10,0

ECHO mode is initially disabled (ECHO0) by the 6K
during Ethernet communications.

Connect2 (netaddress,
lMode)

Description: The Connect2 method opens a connection to a 6K
controller and allows specification of a special
operating mode. Connect3, Connect2 and Connect are
mutually exclusive. When the connection is established
with the 6K, if this is the first client for this 6K
then the special operating mode will be selected. If
this 6K and Com6srvr already have a connection
established, the operating mode will NOT be changed.

Visual Basic: object.Connect2(netaddress as String, lMode As Long) As
Integer

Visual C++: short object.Connect2(LPCTSTR netaddress, long 1Mode)
Delphi: Smallint_variable :=

Object_variable.Connect2(netaddress as String, 1Mode as
Long)

Parameter: netaddress String.
Represents the target controller’s IP
address.

1Mode Long integer.
A constant that specifies mode of operation.
0 specifies normal operation (identical to
using Connect method). 2 specifies Extended
Fast Status with 12 real variables.

Return Type: Short Integer.
If the connection is successfully opened, the method
returns a positive value representing the number of
connected clients. If the connection is unsuccessful,
then an error code is returned (if the specified 1Mode
is illegal, the error code is ER_BADMODE).

Remarks: The Server can handle unlimited Ethernet connections
(to different IP addresses). The 6K takes up to one
minute for an Ethernet connection to truly expire and

COM6SRVR User’s Guide 12

Ethernet communication with 6K

be available for a new connection.

Background Commands: After a successful connection is
made, the following commands are sent to the
controller:
 !PORT0
 !ERRLVL4
 !EOT13,0,0
 !EOL13,10,0

ECHO mode is initially disabled (ECHO0) by the 6K
during Ethernet communications.

Connect3 (netaddress,
lMode, bQuiet, lTimeout)

Description: The Connect3 method opens a connection to a 6K
controller and allows specification of a special
operating mode, dialog behavior and timeout connection
period. Connect3, Connect2 and Connect are mutually
exclusive. When the connection is established with the
6K, if this is the first client for this 6K then the
special operating mode will be selected. If this 6K
and Com6srvr already have a connection established, the
operating mode will NOT be changed.

Visual Basic: object.Connect3(netaddress as String, lMode As Long,
bQuiet as Boolean, lTimeout as Long) As Integer

Visual C++: short object.Connect3(LPCTSTR netaddress, long 1Mode,
boolean bQuiet, long lTimeout)

Delphi: Smallint_variable :=
Object_variable.Connect3(netaddress as String, 1Mode as
Long, bQuiet as Boolean, lTimeout as Long)

Parameter: netaddress String.
Represents the target controller’s IP
address.

1Mode Long integer.
A constant that specifies mode of operation.
0 specifies normal operation (identical to
using Connect method). 2 specifies Extended
Fast Status with 12 real variables.

bQuiet Boolean
 Specifies whether the connection dialog will

be shown. True will hide the connection
dialog, false shows the connection dialog.

lTimeout Long integer
A constant that specifies a timeout period
in mS for the Ethernet connection attempt.
The range for lTimeout is 0-30 seconds.

Return Type: Short Integer.
If the connection is successfully opened, the method
returns a positive value representing the number of
connected clients. If the connection is unsuccessful,
then an error code is returned (if the specified 1Mode
is illegal, the error code is ER_BADMODE).

Remarks: The Server can handle unlimited Ethernet connections
(to different IP addresses). The 6K takes up to one
minute for an Ethernet connection to truly expire and
be available for a new connection.

Background Commands: After a successful connection is
made, the following commands are sent to the
controller:
 !PORT0
 !ERRLVL4
 !EOT13,0,0
 !EOL13,10,0

ECHO mode is initially disabled (ECHO0) by the 6K
during Ethernet communications.

COM6SRVR User’s Guide 13

Ethernet communication with 6K

Flush Description: The Flush method removes all characters from the

client’s receive buffer. This method allows the
programmer to clear the receive buffer prior to making
a read.

Visual Basic: object.Flush
Visual C++: void object.Flush()
Delphi: Object_variable.Flush
Parameter: NONE
Return Type: NONE
Remarks: USE WITH CAUTION. This method allows the programmer to

clear the receive buffer, such that a subsequent Read
call can yield a clean response. However, data arriving
in the receive buffer is asynchronous to the
application program and a thorough understanding of how
the application program is structured is necessary to
use this method correctly (for example, it would not be
beneficial to Flush the buffer if only a partial
response has been received).

GetFile (filename) Description: The GetFile method is used to upload programs currently
stored in the controller.

Visual Basic: object.GetFile(filename as String) As Long
Visual C++: long object.GetFile(LPCTSTR filename)
Delphi: Longint_variable := Object_variable.GetFile(filename as

String)
Parameter: filename String.

Represents the name of the file to store the
uploaded programs. If the filename is an
empty string, then the user will be prompted
for the filename.

Return Type: Long integer.
The method returns a positive value if the operation is
successful; otherwise, it returns an error code (see
table on page 54).

Remarks: Background Commands: At the beginning of a file upload
operation, these commands are sent to the controller:
 !PORT0
 !ERRLVL0
 !EOT1,0,0
 !EOL10,0,0
 !ECHO0
 !TDIR

For each program selected for upload, a “!TPROG”
command is also sent to the controller.

After the upload process is completed, these commands
are sent to the controller:
 !ERRLVL4
 !EOT13,0,0
 !EOL13,10,0

COM6SRVR User’s Guide 14

Ethernet communication with 6K

IsWatchdogTimedOut Description: The IsWatchdogTimedOut method interrogates the current

status of the Ethernet Watchdog. The Ethernet Watchdog
is a handshake established between the COM6SRVR and the
6K to monitor that the Ethernet connection is still
active and “connected”.

Visual Basic: object.IsWatchdogTimedOut As Boolean
Visual C++: BOOL IsWatchdogTimedOut()
Delphi: Boolean_variable := Object_variable.IsWatchdogTimedOut
Parameter: None
Return Type: Boolean.

A True indicates that the Ethernet connection has been
lost (possible causes: the 6K was reset, or the
Ethernet connection was broken). The property is
cleared when a new Ethernet connection is established.

Remarks: For further information, refer to the SetWatchdog
method on page 21.

Ping6K(netaddress,
lTimeout)

Description: The Ping6K method attempts to ping the 6K at the IP
Address specified.

Visual Basic: object.Ping(netaddress as String, lTimeout as Long) As
Long

Visual C++: long Ping(LPCTSTR netaddress, long lTimeout)
Delphi: Long_variable := Object_variable.Ping(netaddress as

String, lTimeout as long)
Parameter: netaddress String.

Represents the target controller’s IP
address.

lTimeout Long integer.
Timeout period in mS for Ping6K. The range
for lTimeout is (0 – 30000).

Return Type: Long
The method returns a positive value if the operation is
successful; otherwise, it returns an error code (see
table on page 54).

Remarks:

Read () Description: The Read method retrieves command responses from the
controller.

Visual Basic: object.Read() As String
Visual C++: CString object.Read()
Delphi: String_variable := Object_variable.Read
Parameter: NONE
Return Type: String.

The read method does not wait for incoming responses
from the controller. It returns immediately with a
string containing the controller’s response at the time
of the request. If no response is available, this
method returns an empty string. The Read method
response is limited to 256 characters. If the response
is longer than 256 characters, the excess characters
will remain in the COM6SRVR buffer. Multiple reads are
necessary for long responses.

Remarks: You should disable Timer events in VB5 and VBScript
when reading and writing to the COM6SRVR (see Microsoft
Support Online Article ID176399).

COM6SRVR User’s Guide 15

Ethernet communication with 6K

RequestFastStatusUpdate Description: The RequestFastStatusUpdate method allows the COM6SRVR

to request a fast status update as needed, without
having to enable the fast status “Streaming Mode”
(FSEnabled) or set an update interval (FSUpdateRate).

Visual Basic: object.RequestFastStatusUpdate As Integer
Visual C++: short object.RequestFastStatusUpdate
Parameter: NONE
Return Type: Short integer.

If the RequestFastStatusUpdate call is successful the
method returns the number of bytes sent. If the call is
unsuccessful, the method returns a negative error code
(see error code table on page 54).

Remarks: This method is one of two “On Demand” fast status
update options. The other option is for the 6K to
execute the NTSFS. Using an On Demand update technique
is more efficient for interactive PC applications than
the Streaming Mode, and reduces network traffic. For an
overview of using the fast status, refer to page 57.

SendFile (filename) Description: The SendFile method is used to download program files
to the controller.

Visual Basic: object.SendFile(filename as String) As Long
Visual C++: long object.SendFile(LPCTSTR filename)
Delphi: Longint_variable := Object_variable.SendFile(filename

as String)
Parameter: filename String.

Represents the name of the program file
(containing 6K programs/code) to be
downloaded. If the filename is an empty
string, then the user will be prompted for
the filename.

Return Type: Long integer.
The method returns a positive value if the operation is
successful; otherwise, it returns an error code (see
table on page 54).

Remarks: To speed up downloads, the SendFile method strips
comments from the downloaded 6K code. That is, all text
between the comment delimiter (semi-colon) and the
command delimiter (carriage return or line feed) is
removed.

Background Commands: At the beginning of a file
download operation, these commands are sent to the
controller:
 !PORT0
 !ERRLVL0

After the download process is completed, these commands
are sent to the controller:
 !PORT0
 !ERRLVL4
 !EOT13,0,0
 !EOL13,10,0

NOTE: If the download process is canceled, an “END”
command is sent to the controller.

COM6SRVR User’s Guide 16

Ethernet communication with 6K

SendFileBlocking
(filename)

Description: This method, like the SendFile method, is used to
download program files to the controller. It differs
from SendFile in that it blocks the return of the
method call until the 6K acknowledges that the file has
been downloaded. A dialog informs the user to wait for
the 6K to acknowledge. The dialog has a CANCEL button
(a software specified Timeout is not provided). If the
user clicks the CANCEL button, the method returns the
error code –20.

Visual Basic: object.SendFileBlocking(filename as String) As Long
Visual C++: long object.SendFileBlocking(LPCTSTR lpFileName)
Delphi: Longint_variable :=

Object_variable.SendFileBlocking(filename as String)
Parameter: filename String.

Represents the name of the program file
(containing 6K programs/code) to be
downloaded. If the filename is an empty
string, then the user will be prompted for
the filename.

Return Type: Long integer.
The method returns a positive value if the operation is
successful; otherwise, it returns an error code (error
code -20 is returned when the user clicks the CANCEL
button).
Remarks: To speed up downloads, the SendFileBlocking
method strips comments from the downloaded 6K code.
That is, all text between the comment delimiter (semi-
colon) and the command delimiter (carriage return or
line feed) is removed.

Background Commands: (same as SendFile)

NOTE: If the download process is canceled, an "END"
command is sent to the controller and the error code (-
20) is returned.

SendFileQuiet (filename) Description: The SendFileQuiet method is used to download program
files to the controller while suppressing the download
status dialog message.

Visual Basic: object.SendFileQuiet(filename as String) As Long
Visual C++: long object.SendFileQuiet(LPCTSTR lpFileName)
Delphi: Longint_variable :=

Object_variable.SendFileQuiet(filename as String)
Parameter: filename String.

Represents the name of the program file
(containing 6K or Gem6K programs/code) to be
downloaded. If the filename is an empty
string, then the user will be prompted for
the filename.

Return Type: Long integer.
The method returns a positive value if the operation is
successful; otherwise, it returns an error code (see
table on page 54).

Remarks: To speed up downloads, the SendFileQuiet method strips
comments from the downloaded code. That is, all text
between the comment delimiter (semi-colon) and the
command delimiter (carriage return or line feed) is
removed.

NOTE: The SendFileQuiet method should be called when
motion is not in progress and programs are not running.

Background Commands: At the beginning of a file
download operation, these commands are sent to the
controller:

 !PORT0
 !ECHO0

COM6SRVR User’s Guide 17

Ethernet communication with 6K

 !ERRLVL0
 !EOT1,0,0
 !EOL10,0,0
 !TDIR

After the download process is completed, these commands
are sent to the controller:

 !PORT0
 !EOT13,0,0
 !EOL13,10,0
 !ERRLVL4
 !ECHO1

NOTE: If the download process is canceled, an "END"
command is sent to the controller.

SendFileQuietBlocking
(filename)

Description: This method, like the SendFileQuiet method, is used to
download program files to the controller while
suppressing the download dialog. It differs from
SendFileQuiet in that it blocks the return of the
method call until the 6K acknowledges that the file has
been downloaded. A dialog informs the user to wait for
the 6K to acknowledge. The dialog has a CANCEL button
(a software specified Timeout is not provided). If the
user clicks the CANCEL button, the method returns the
error code –20.

Visual Basic: object.SendFileQuietBlocking(filename as String) As
Long

Visual C++: long object.SendFileQuietBlocking(LPCTSTR lpFileName)
Delphi: Longint_variable :=

Object_variable.SendFileQuietBlocking(filename as
String)

Parameter: filename String.
Represents the name of the program file
(containing 6K programs/code) to be
downloaded. If the filename is an empty
string, then the user will be prompted for
the filename.

Return Type: Long integer.
The method returns a positive value if the operation is
successful; otherwise, it returns an error code (error
code -20 is returned when the user clicks the CANCEL
button).

Remarks: To speed up downloads, the SendFileQuietBlocking method
strips comments from the downloaded 6K code. That is,
all text between the comment delimiter (semi-colon) and
the command delimiter (carriage return or line feed) is
removed.

Background Commands: (same as SendFile)

NOTE: If the download process is canceled, an "END"
command is sent to the controller and the error code (-
20) is returned.

SendVariable
(nVariableMask, vaValue)

Description: The SendVariable method sends one variable from the
variable packet to the 6K controller.

Visual Basic: object.SendVariable(nVariableMask As Long, vaValue As
Variant) As Integer

Visual C++: short object.SendVariable(long nVariableMask, const
VARIANT FAR& vaValue)

Parameter: nVariableMask Long integer.
Specifies the one variable to be
sent. Constants are defined for the
mask bits (mask bits for Visual Basic
and Visual C++ are provided below).
Only one bit can be set in the
nVariableMask.

COM6SRVR User’s Guide 18

Ethernet communication with 6K

vaValue Variant.

Specifies the value of the variable
to be sent. The actual variable being
sent is specified by the
nVariableMask. Because the
SendVariable Method can be used to
send integer, real or binary
variables, the data type can either
be a long integer or a double
floating point value. Using a Variant
parameter allows the flexibility of
sending any integer type, while
allowing the COM6SRVR to cast the
Variant into the appropriate data
type.

Return Type: Short integer.
If the SendVariable call is successful, the method
returns the number of bytes sent. If the call is
unsuccessful, the method returns a negative error code
(see error code table on page 54). Errors codes are
returned if more than one bit is set in the
nVariableMask or if the Variant data type is
incompatible. Error codes are also returned if there
are Ethernet communications errors.

Remarks: Refer to page 59 for an overview of using Send
Variables packets.
The data range of real variables in the 6K and the
number of significant figures available in a double
data type in the PC programming language may cause some
rounding errors. The 6K can store data with greater
significance, but with a smaller range of values (refer
to the VAR command in the 6K Series Command Reference
and to your PC programming language reference).

Variable Packet Mask Bits for Visual Basic Variable Packet Mask Bits for Visual C++
Public Const VARI1 As Long = 1
Public Const VARI2 As Long = 2
Public Const VARI3 As Long = 4
Public Const VARI4 As Long = 8
Public Const VARI5 As Long = 16
Public Const VARI6 As Long = 32
Public Const VARI7 As Long = 64
Public Const VARI8 As Long = 128
Public Const VARI9 As Long = 256
Public Const VARI10 As Long = 512
Public Const VARI11 As Long = 1024
Public Const VARI12 As Long = 2048

Public Const VAR1 As Long = 4096
Public Const VAR2 As Long = 8192
Public Const VAR3 As Long = 16384
Public Const VAR4 As Long = 32768
Public Const VAR5 As Long = 65536
Public Const VAR6 As Long = 131072
Public Const VAR7 As Long = 262144
Public Const VAR8 As Long = 524288
Public Const VAR9 As Long = 1048576
Public Const VAR10 As Long = 2097152
Public Const VAR11 As Long = 4194304
Public Const VAR12 As Long = 8388608

Public Const VARB1 As Long = 16777216
Public Const VARB2 As Long = 33554432
Public Const VARB3 As Long = 67108864
Public Const VARB4 As Long = 134217728
Public Const VARB5 As Long = 268435456
Public Const VARB6 As Long = 536870912
Public Const VARB7 As Long = 1073741824
Public Const VARB8 As Long = &H80000000

#define VARI1 0x00000001
#define VARI2 0x00000002
#define VARI3 0x00000004
#define VARI4 0x00000008
#define VARI5 0x00000010
#define VARI6 0x00000020
#define VARI7 0x00000040
#define VARI8 0x00000080
#define VARI9 0x00000100
#define VARI10 0x00000200
#define VARI11 0x00000400
#define VARI12 0x00000800

#define VAR1 0x00001000
#define VAR2 0x00002000
#define VAR3 0x00004000
#define VAR4 0x00008000
#define VAR5 0x00010000
#define VAR6 0x00020000
#define VAR7 0x00040000
#define VAR8 0x00080000
#define VAR9 0x00100000
#define VAR10 0x00200000
#define VAR11 0x00400000
#define VAR12 0x00800000

#define VARB1 0x01000000
#define VARB2 0x02000000
#define VARB3 0x04000000
#define VARB4 0x08000000
#define VARB5 0x10000000
#define VARB6 0x20000000
#define VARB7 0x40000000
#define VARB8 0x80000000

COM6SRVR User’s Guide 19

Ethernet communication with 6K

SendVariablePacket
(vaPacket)

Description: The SendVariablePacket method sends a packet of
variables to the 6K controller. A complete packet of
variables (comprising 6K integer variables 1-12, real
variables 1-12 and binary variables 1-8) are always
sent. (Refer to the Variable Structures listed below
for VB and VC++.) Also included in the packet is a
mask, which allows specific variables to be write-
protected or over-written.

Visual Basic: object.SendVariablePacket(vaPacket As Variant) As
Integer

Visual C++: short object.SendVariablePacket (const VARIANT FAR&
vaPacket)

Parameter: vaPacket Variant.
An array of bytes representing the
SendVariable packet. The array of bytes
comprise: mask bits, reserved elements and
bytes of data for the variables. To send a
variable packet:

1. Create a structure (TypeDef) and populate the
structure with the mask and the variable values.

2. Create an array of bytes from the structure (VB
uses Windows API function CopyMemory, Visual C++
uses SAFEARRAYS).

3. Pass the array of bytes as a Variant to the
SendVariablePacket method.

Refer also to the examples in the SimpleOnePlus sample
VB application.

Return Type: Short integer.
If the SendVariablePacket call is successful the method
returns the number of bytes sent. If the call is
unsuccessful, the method returns a negative error code
(see error code table on page 54). Errors codes are
returned if the variant data type is incompatible or if
there are Ethernet communication errors.

Remarks: Refer to page 59 for an overview of using Send
Variables packets.
A list of mask bits for Visual Basic and Visual C++ is
provided in the SendVariables method description above.

The data range of real variables in the 6K and the
number of significant figures available in a double
data type in the PC programming language may cause some
rounding errors. The 6K can store data with greater
significance, but with a smaller range of values (refer
to the VAR command in the 6K Series Command Reference
and to your PC programming language reference).

Variable Structure for Visual Basic Variable Structure for Visual C++
Type SendVariableStructure
 Mask As Long
 Reserved1 As Long
 Reserved2 As Long
 Reserved3 As Long
 VarI(1 To 12) As Long
 VarR(1 To 12) As Double
 VarB(1 To 8) As Long
End Type

typedef struct VARIABLEPACKETStruct {
 int nVariableMask;
 int nReserved1;
 int nReserved2;
 int nReserved3;
 int VARI[12];
 double VAR[12];
 int VARB[8];
} VARIABLEPACKET, *LPVARIABLEPACKET;

COM6SRVR User’s Guide 20

Ethernet communication with 6K

SetSendFileDelay (delay) Description: SetSendFileDelay allows you to specify the delay for

each character when making a call to the SendFile
method. (see Remarks below for detail)

Visual Basic: object.SetSendFileDelay(delay As Integer) As Integer
Visual C++: short object.SetSendFileDelay(short delay)
Parameter: delay Integer.

The parameter specifies the delay for each
character transmitted. Valid range is 0-100
(milliseconds). 0 = no delay.

Return Type: Short integer.
Returns zero if the specified delay is valid. If the
specified delay is out of range, error code –11 is
returned.

Remarks: When making a call to the SendFile Ethernet method, a
2-ms per character delay is inserted to allow the
commands to be transmitted and processed through the
TCP/IP stack and the 6K internal buffers. In some cases
the delay is not necessary, because the TCP/IP stack
takes care of flow-control. In other cases, it might be
desirable to allow a longer delay, such as when sending
data over a very busy network. This method provides a
means to control the delay, allowing a delay of 0-100
ms per character.

SetWatchdog (wTimeout,
wTicker)

Description: The SetWatchdog method enables Ethernet watchdog hand-
shaking between the COM6SRVR and the 6K Controller.

Visual Basic: object.SetWatchdog(wTimeout as Integer, wTicker as
Integer) as Integer

Visual C++: short SetWatchdog(short wTimeout, short wTicker)
Delphi: Smallint_variable :=

Object_variable.SetWatchdog(wTimeout as Smallint,
wTicker as Smallint)

Parameters: wTimeout . Timeout period in seconds (see guidelines
below)
wTicker .. Number of “heartbeat” packets to send during
the timeout period

Return Type: Short integer.
Returns zero if successful, or a negative error value
(usually –11, which indicates that an invalid
configuration was specified).

Remarks: The Ethernet watchdog allows the COM6SRVR and 6K
Controller to gracefully recover when communication
between the 6K and COM6SRVR is lost. Such situations
might arise from the loss of power to the 6K or to the
PC while an Ethernet connection was active. By enabling
the Watchdog, a heartbeat packet is sent periodically
by the COM6SRVR. The 6K detects the heartbeat and
echoes it back to the COM6SRVR. If the COM6SRVR does
not detect the echoed heartbeat (within the constraints
set by the wTimeout and wTicker parameters), the
watchdog is considered timed out. If the 6K does not
receive the heartbeat (within the same wTimeout and
wTicker constraints), the 6K considers the watchdog
timed out.

Loss or delay of a single echoed heartbeat could happen
quite frequently on a busy network connection.
Therefore, we provide a method whereby a number of re-
tries are attempted over a specific timeout period. If
all re-tries fail within the timeout period, then the
watchdog is considered to have timed out. This
functionality is provided by the wTimeout and wTicker
parameters. The constraints for these parameters are as
follows:

• To enable the watchdog, set wTimeout > 0 > wTicker.
• To disable the watchdog, set wTimeout = 0 and set

wTicker = 0.

COM6SRVR User’s Guide 21

Ethernet communication with 6K

• The wTimeout/wTicker ratio must be ≤ 65.

RECOMMENDATION: Set wTimeout = 100 and wTicker = 5,
which provides a heartbeat once every twenty seconds
(100 seconds / 5 tries = 20 seconds/attempt). If none
of the 5 heartbeats are acknowledged in 100 seconds,
the watchdog times out.

WHEN A WATCHDOG TIMEOUT OCCURS:

• In the 6K: When the 6K detects a watchdog timeout,
it attempts to send an alarm packet to the COM6SRVR
(AlarmStatus bit #22 – see page 24). It then closes
the Ethernet connection and reports “disconnected”
in the TNT report. If the user has enabled error-
checking bit #22 (ERROR.22-1), the 6K will execute a
GOSUB branch to the ERRORP program. Within the
ERRORP program, the watchdog timeout can be cleared
by disabling ERROR bit #22 (ERROR.22-0).

• In the COM6SRVR: When the COM6SRVR detects a
watchdog timeout, the IsWatchdogTimedOut method (see
page 15) returns TRUE. (If the COM6SRVR receives the
alarm packet from the 6K, it will also display an
alert dialog to the user.) A client application can
poll the IsWatchdogTimedOut. When a timeout is
detected by the COM6SRVR, the Client application
should “disconnect” the COM6SRVR (if using VB, set
COM6SRVR object to Nothing. If using VC++, use
ReleaseDispatch). After the COM6SRVR has been
disconnected, creating a new Com6srvr object and
“connecting” Ethernet will clear the watchdog
timeouts. All client applications for that
particular 6K Ethernet connection should be
disconnected.

Write (cmd) Description: The Write method is used to send commands to the
controller.

Visual Basic: object.Write(cmd as String) As Integer
Visual C++: short object.Write(LPCTSTR cmd)
Delphi: Smallint_variable := Object_variable.Write(cmd as

String)
Parameter: cmd String.

A string of commands to be sent. Multiple
commands can be sent, but each command
should be separated with a valid 6K command
delimiter (colon, carriage return, or line
feed). The command string should be limited
to 256 characters or less. Larger command
strings may cause an overflow in the 6K’s
command buffer.

Return Type: Short integer.
This method returns a positive value corresponding to
the number of bytes sent, or a negative error code (see
table on page 54).

Remarks: You should disable Timer events in VB5 and VBScript
when reading and writing to the COM6SRVR (see Microsoft
Support Online Article ID176399).

COM6SRVR User’s Guide 22

Ethernet communication with 6K

WriteBlocking (cmd,
timeout)

Description: The WriteBlocking method, an alternative to the Write
method, is used to send commands to the controller. The
primary difference from the Write method is that
WriteBlocking does not return from the method call
until the commands have been executed in the controller
within a specified time.

Visual Basic: object.WriteBlocking(cmd As String, timeout As Integer)
As Integer

Visual C++: short object.WriteBlocking(LPCTSTR cmd, short timeout)
Parameter: cmd String.

A string of commands to be sent. Multiple
commands can be sent, but each command
should be separated with a valid 6K command
delimiter (colon, carriage return, or line
feed). The command string should be limited
to 256 characters or less. Larger command
strings may cause an overflow in the 6K’s
command buffer.

timeout Integer.
Specifies the time period to wait for
acknowledgement from the 6K. The time is
specified in milliseconds. A value of zero
specifies an infinite period.

Return Type: Short integer.
This method returns a positive value corresponding to
the number of bytes sent, or a negative error code.
Error code –19 indicates a timeout.

Remarks: The WriteBlocking method can be used as an alternative
to the Write method. The discussion below outlines the
benefits of the WriteBlocking method, as compared to
the Write method.
The Write method sends commands to the 6K by placing
commands into the TCP/IP send buffer. The Write method
then returns when the last 6K command has been placed
into the TCP/IP buffer. If the 6K is busy performing
motion or processing commands from the buffer, the
Write method is very likely to return before the
recently written commands are executed within the 6K.
The WriteBlocking method sends commands to the 6K by
placing commands into the TCP/IP send buffer, just like
the Write method. However, WriteBlocking does not
return from the method call until the command has been
executed within the 6K controller. To prevent a
permanently blocked call, a timeout parameter has been
added to allow the function to return in the event that
the 6K controller does not execute the commands within
a specified time.
The WriteBlocking functions by requesting an
acknowledgement from the 6K that the commands have been
executed. A timeout can occur for several reasons: loss
of power to the 6K, the Ethernet cable is disconnected,
processing of commands took longer than expected, an
error occurred within the applications (such as, a KILL
occurred or the 6K program has jumped to the error
routine).
NOTE: You should disable Timer events in VB5 and
VBScript when reading and writing to the COM6SRVR (see
Microsoft Support Online Article ID176399).

COM6SRVR User’s Guide 23

Ethernet communication with 6K

Ethernet Properties
Bit Status Convention

When retrieving bit-oriented properties (e.g., AxisStatus, ErrorStatus, Limits, SystemStatus, etc.) note that
the convention in the 6K programming language differs from the convention used for C and Assembly
programming languages. Compumotor’s 6K convention is to refer to the bits within a 32 bit long integer as
bits 1 through 32 (left to right). The C and Assembler Programmer's convention refers to these as bits 0
through 31 (right to left). When masking these bits, you should be aware of this subtle difference when
referring to 6K documentation.

AlarmStatus (bit) Description: The AlarmStatus property returns the state of the
controller’s alarm status.

Visual Basic: object.AlarmStatus(bit As Integer) as Long
Visual C++: long object.GetAlarmStatus(short bit)
Delphi: Longint_variable := Object_variable.AlarmStatus(bit as

Smallint)
Parameter: bit Short Integer.

Specifies the status bit of the alarm status to
return. It can be a number between 0 and 32.
Values between 1-32 represent the alarm bits as
described in the table below (refer also to the
INTHW command). Specifying a bit value of 0
returns the entire 32 bit alarms status as a long
value; otherwise a value of 1 or 0 is returned to
indicate the state of any single bit. When any
single bit status is retrieved using the
AlarmStatus property, that bit status is
automatically cleared by the Communications
Server. If a bit value of 0 is used then all
alarm status bits are cleared.

Return Type: Long Integer.
Remarks: When the 6K sends an alarm packet to the COM6SRVR, the

FastStatus structure is automatically updated,
regardless of state of FSEnabled.

Bit # Function **
 1 Software (forced) Alarm #1
 2 Software (forced) Alarm #2
 3 Software (forced) Alarm #3
 4 Software (forced) Alarm #4
 5 Software (forced) Alarm #5
 6 Software (forced) Alarm #6
 7 Software (forced) Alarm #7
 8 Software (forced) Alarm #8
 9 Software (forced) Alarm #9
 10 Software (forced) Alarm #10
 11 Software (forced) Alarm #11
 12 Software (forced) Alarm #12
 13 Command Buffer Full
 14 ENABLE input Activated
 15 Program Complete
 16 Drive Fault on any Axis

 Bit # Function
 17 Reserved
 18 Reserved
 19 Limit Hit - hard or soft limit, on any axis
 20 Stall Detected (stepper)
 or Position Error (servo) on any axis
 21 Timer (TIMINT)
 22 Ethernet fail (RESET or ER.22 occurred)
 (also invokes an error dialog)
 23 Input - any of the inputs defined by
 INFNCi-I or LIMFNCi-I
 24 Command Error
 25 Motion Complete on Axis 1
 26 Motion Complete on Axis 2
 27 Motion Complete on Axis 3
 28 Motion Complete on Axis 4
 29 Motion Complete on Axis 5
 30 Motion Complete on Axis 6
 31 Motion Complete on Axis 7
 32 Motion Complete on Axis 8

** Bits 1-12: software alarms are forced with the INTSW command.

AnalogInput (channel)

Description: The AnalogInput property returns the value (in counts)
of the specified analog input.

Visual Basic: object.AnalogInput(channel As Integer) As Long
Visual C++: short object.GetAnalogInput(short channel)
Delphi: Smallint_variable :=

Object_variable.AnalogInput(channel as Smallint)
Parameter: channel Short Integer.

Specifies the analog input channel (channel
1 or 2) value to return. This property uses

COM6SRVR User’s Guide 24

Ethernet communication with 6K

only the first two analog inputs detected on
an I/O brick connected to the 6K, regardless
of the ANIEN (analog input enable) setting.

Return Type: Short integer.
The method returns the specified analog input value in
counts.

Remarks: Requires fast status to be enabled with FSEnabled
property.

AxisStatus (axis) Description: Use the AxisStatus property to retrieve the current
axis status for the specified axis.

Visual Basic: object.AxisStatus(axis As Integer) As Long
Visual C++: long object.GetAxisStatus(short axis)
Delphi: Longint_variable := Object_variable.AxisStatus(axis as

Smallint)
Parameter: axis Short Integer.

Specifies the axis about which the status
pertains. The range for this value is 1-8.

Return Type: Long Integer.
The long integer value represents the current axis
status for the specified axis. Refer to the TAS command
description for a list of the status elements.

Remarks: Requires fast status to be enabled with FSEnabled
property.

CommandCount Description: Use the CommandCount property to ascertain how many 6K

commands have been executed (outside of defined
programs) since the 6K controller was powered up.

Visual Basic: object.CommandCount As Long
Visual C++: long object.GetCommandCount()
Delphi: Longint_variable := Object_variable.CommandCount
Parameter: NONE
Return Type: Long Integer.

The value represents the number of 6K commands which
have been executed outside of defined programs, since
the 6K controller was powered up.

Remarks: This is a read-only property.
This property allows users to track when commands being
sent to the controller (via the communications ports)
have been executed. The value is reset to zero each
time power is cycled on the 6K. The return value is
affected by any background commands sent in conjunction
with the Connect, GetFile, and SendFile methods.
This property requires fast status to be enabled with
the FSEnabled property.

Counter Description: The Counter property returns the current Time Frame
Counter value.

Visual Basic: object.Counter As Integer
Visual C++: short object.GetCounter()
Delphi: Smallint_variable := Object_variable.Counter
Parameter: NONE
Return Type: Short Integer.

The values represents the current Time Frame Counter
value.

Remarks: This is a read-only property.
The Time Frame Counter is a free-running timer in the
controller. The Counter is updated at the System Update
Rate (2 milliseconds).
This property requires fast status to be enabled with
the FSEnabled property.

COM6SRVR User’s Guide 25

Ethernet communication with 6K

EncoderPos (axis) Description: The EncoderPos property returns the current encoder

position (TPE) in counts for the specified axis.
Visual Basic: object.EncoderPos(axis As Integer) As Long
Visual C++: long object.GetEncoderPos(short axis)
Delphi: Longint_variable := Object_variable.EncoderPos(axis)
Parameter: axis Integer.

Specifies the axis number of the encoder.
The range for this value is 1-8.

Return Type: Long Integer.
The value represents the current encoder position (TPE)
in counts for the specified axis.

Remarks: This is a read-only property.
Requires fast status to be enabled with FSEnabled
property.

ErrorStatus Description: The ErrorStatus property returns the current error
status (TER) of task 0 only.

Visual Basic: object.ErrorStatus As Long
Visual C++: long object.GetErrorStatus()
Delphi: Longint_variable := Object_variable.ErrorStatus
Parameter: NONE
Return Type: Long Integer.

The values represents the current error status (TER) of
task 0 only.

Remarks: Requires fast status to be enabled with FSEnabled
property

ExFastStatus Description: The ExFastStatus property returns the entire Extended

Fast Status data structure.
Visual Basic: object.ExFastStatus As Variant
Visual C++: VARIANT object.GetExFastStatus()
Delphi: Variant_variable := Object_variable.ExFastStatus
Parameter: NONE
Return Type: Variant.

The variant represents the value of the entire Extended
Fast Status data structure.

Remarks: This property allows for faster, more efficient
retrieval of the Extended Fast Status information if
multiple Extended Fast Status items need to be checked
at once. The variant is essentially a byte array which
can be mapped into an Extended Fast Status structure
(see table below for Extended Fast Status and Fast
Status structure). The Extended Fast Status structure
comprises the regular Fast Status structure, plus 96
additional bytes for the 12 real variables. Each real
variable is a 'double' and occupies 8 bytes.
NOTE: This property requires fast status to be enabled
with FSEnabled property.
NOTE: When the object is first created, the
ExFastStatus data will read zeroes. There after, it
will report the most recently updated values. When
FSEnabled is set to FALSE, the ExFastStatus structure
will retain the values from the last update. When the
6K sends an alarm packet to the COM6SRVR, the
ExFastStatus structure is automatically updated,
regardless of state of FSEnabled.

COM6SRVR User’s Guide 26

Ethernet communication with 6K

FastStatus Description: The FastStatus property returns the entire FastStatus

data structure.
Visual Basic: object.FastStatus As Variant
Visual C++: VARIANT object.GetFastStatus()
Delphi: Variant_variable := Object_variable.FastStatus
Parameter: NONE
Return Type: Variant.

The variant represents the value of the entire
FastStatus data structure.

Remarks: This property allows for faster, more efficient
retrieval of the FastStatus information if multiple
FastStatus items need to be checked at once. The
variant is essentially a byte array which can be mapped
into a FastStatus structure (see table below for
FastStatus structure). The Fast Status structure
includes ten integer (VARI) variables and ten binary
(VARB) variables that you can use to customize the Fast
Status content.
Refer to the VB5 sample application SimpleOne in the
subroutine cmdGetData_Click() for details of how to
convert the byte array data into a Fast Status
structure (User Defined Type). Refer to the VC5 sample
application VC_Ethernet in the subroutine
MakeFastStatus for details on how to convert from a
byte array into a Fast Status TypeDef. VBScript does
not allow use of structures – use the properties
Inputs() and MotorPos().
NOTE: This property requires fast status to be enabled
with FSEnabled property.
NOTE: When the object is first created, the FastStatus
data will read zeroes. There after, it will report the
most recently updated values. When FSEnabled is set to
FALSE, the FastStatus structure will retain the values
from the last update. When the 6K sends an alarm packet
to the COM6SRVR, the FastStatus structure is
automatically updated, regardless of state of
FSEnabled.

Fast Status — Packet Data Definition (280 bytes total)

Type Description Bytes
WORD wUpdateID Unique update ID for synch channel 2
WORD wCounter Time Frame Counter 2
DWORD dwMotorPos[8] Commanded Position (TPC) 32
DWORD dwEncPos[8] Encoder Position (TPE) 32
DWORD dwMotorVel[8] Commanded Velocity (TVEL) 32
DWORD dwAxisStatus[8] Axis Status (TAS) 32
DWORD dwSystemStatus System Status (TSS) 4
DWORD dwErrorStatus Error Status (TER) 4
DWORD dwUserStatus User Status (TUS) 4
DWORD dwTimer Timer (TTIM) 4
DWORD dwLimits Limit Status (TLIM) 4
DWORD dwInputs[4] Input Status (TIN) 16
DWORD dwOutputs[4] Output Status (TOUT) 16
DWORD dwTriggers Trigger Status (TTRIG) 4
WORD wAnalogIn[2] Analog Input Value (TANI - in counts) 4
DWORD dwVarb[10] Binary Variable Values (VARB1 through VARB10) 40
DWORD dwVari[10] Integer Variable Values (VARI1 through VARI10) 40
DWORD dwIPAddress IP Address (NTADDR) 4
DWORD dwCmdCount Command Count 4
*DWORD dwVar[12] Real Variable Values (VAR1 through VAR12) 96
 * only applicable with ExFastStatus

COM6SRVR User’s Guide 27

Ethernet communication with 6K

FSEnabled Description: The FSEnabled property sets or returns the state of

FastStatus polling.
Visual Basic: object.FSEnabled As Boolean
Visual C++: Read: BOOL object.GetFSEnabled()

Write: void object.SetFSEnabled(BOOL state)
Delphi: Read: Boolean_variable := Object_variable.FSEnabled

Write: Object_variable.FSEnabled := (state as Boolean)
Parameter: Boolean (read/write property).
Return Type: Boolean (read/write property).
Remarks: The table above lists the items in the FastStatus

structure. If the FSEnabled property is set to TRUE,
then FastStatus information is automatically retrieved
from the controller on a continual basis. BE AWARE
that enabling automatic FastStatus polling provides
fresh data from the controller on a continual basis,
but this will impair the controller’s processing time
and create a high volume of traffic over the Ethernet
network interface.
If you intend to enable automatic FastStatus polling,
be sure to first set the FSUpdateRate property
accordingly. If the FSEnabled property is set to
FALSE, automatic FastStatus polling is turned off (but
the FastStatus structure will retain the values from
the last update).

FSUpdateRate

Description: The FSUpdateRate property is used to set the
millisecond interval on which the controller
automatically updates its FastStatus information.

Visual Basic: object.FSUpdateRate As Integer
Visual C++: Read: short object.GetFSUpdateRate()

Write: void object.SetFSUpdateRate(short rate)
Delphi: Read: Smallint_variable := Object_variable.FSUpdateRate

Write: Object_variable.FSUpdateRate := (rate as
Smallint)

Parameter: Short Integer (read/write property).
Return Type: Short Integer (read/write property).
Remarks: This property should be set before the FSEnabled

property is set to TRUE. Setting a larger value for
this property means that information will be update
less frequently, thereby consuming less of the
controller’s processing resources. A small value will
provide for more frequent updates, but consume more
processing time. Valid values for this property are
from 10 to 65536.
Visual Basic Users: COM6SRVR interprets the
FSUpdateRate as an unsigned 16-bit integer value.
Visual Basic does not support the use of unsigned data
types. Therefore, you have to pass a signed 16-bit
integer and allow the COM6SRVR to interpret it as
unsigned. Thus, to allow slower update intervals than
32767 ms, a VB programmer would pass a negative value
(see examples below):
Value passed is –1 (result is 65535 ms/update)
Value passed is –32768 (result is +32768 ms/update)
Value passed is –30000 (result is +35536 ms/update)
Value passed is –25536 (result is +40000 ms/update)
Value passed is +32767 (result is +32767 ms/update)
Value passed is +10 (result is +10 ms/update)

COM6SRVR User’s Guide 28

Ethernet communication with 6K

Inputs (brick) Description: Use the Inputs property to check the current state of

the inputs (TIN) on a specific brick.
Visual Basic: object.Inputs(brick As Integer) As Long
Visual C++: long object.GetInputs(short brick)
Delphi: Longint_variable := Object_variable.Inputs(brick as

Smallint)
Parameter: brick Short Integer.

Represents the number of the brick where the
inputs reside. Range is 0-3. Brick 0
represents the onboard inputs. Bricks 1-3
represent expansion I/O bricks 1-3.

Return Type: Long Integer.
The value represents the current state of the inputs
(TIN) for the specified brick.

Remarks: This is a read-only property.
This property requires fast status to be enabled with
FSEnabled property.

IPAddress Description: The IPAddress property returns the controller’s IP
Address (NTADDR).

Visual Basic: object.IPAddress As Long
Visual C++: long object.GetIPAddress()
Delphi: Longint_variable := Object_variable.IPAddress
Parameter: NONE
Return Type: Long Integer.

The value represents the controller’s IP Address
(NTADDR).

Remarks: This is a read-only property.
This property requires fast status to be enabled with
FSEnabled property.

Limits Description: The Limits property returns the current limit status
(TLIM).

Visual Basic: object.Limits As Long
Visual C++: long object.GetLimits()
Delphi: Longint_variable := Object_variable.Limits
Parameter: NONE
Return Type: Long Integer.

The value represents the current limit status (TLIM).
Remarks: This is a read-only property.

This property requires fast status to be enabled with
FSEnabled property.

MotorPos (axis) Description: The MotorPos property returns the current commanded
position (TPC) for the specified axis.

Visual Basic: object.MotorPos(axis As Integer) As Long
Visual C++: long object.GetMotorPos(short axis)
Delphi: Longint_variable := Object_variable.MotorPos(axis as

Smallint)
Parameter: axis Short Integer.

Specifies the axis number (range is 1-8).
Return Type: Long Integer.

The value represents the current commanded position
(TPC) in counts for the specified axis.

Remarks: This is a read-only property.
This property requires fast status to be enabled with
FSEnabled property.

COM6SRVR User’s Guide 29

Ethernet communication with 6K

MotorVel (axis) Description: The MotorVel property returns the current commanded

motor velocity (TVEL) for the specified axis.
Visual Basic: object.MotorVel(axis As Integer) As Long
Visual C++: long object.GetMotorVel(short axis)
Delphi: Longint_variable := Object_variable.MotorVel(axis as

Smallint)
Parameter: axis Short Integer.

Specifies the axis number (range is 1-8).
Return Type: Long Integer.

The value represents the current commanded velocity
(TVEL) in counts for the specified axis.

Remarks: This is a read-only property.
This property requires fast status to be enabled with
FSEnabled property.

Outputs (brick) Description: The Outputs property returns the state of the outputs

(TOUT) on the specified brick.
Visual Basic: object.Outputs(brick As Integer) As Long
Visual C++: long object.GetOutputs(short brick)
Delphi: Longint_variable := Object_variable.Outputs(brick as

Smallint)
Parameter: brick Short Integer.

Represents the number of the brick where the
outputs reside. Range is 0-3. Brick 0
represents the onboard outputs. Bricks 1-3
represent expansion I/O bricks 1-3.

Return Type: Long Integer.
The value represents the state of the outputs (TOUT) on
the specified brick.

Remarks: This is a read-only property.
This property requires fast status to be enabled with
FSEnabled property.

SystemStatus Description: The SystemStatus property returns the system status
(TSS) for task 0 only.

Visual Basic: object.SystemStatus As Long
Visual C++: long object.GetSystemStatus()
Delphi: Longint_variable := Object_variable.SystemStatus
Parameter: NONE
Return Type: Long Integer.

The value represents the system status (TSS) for task 0
only.

Remarks: This is a read-only property.
This property requires fast status to be enabled with
FSEnabled property.

Timer Description: The Timer property returns the current Timer value
(TTIM) for task 0 only.

Visual Basic: object.Timer As Long
Visual C++: long object.GetTimer()
Delphi: Longint_variable := Object_variable.Timer
Parameter: NONE
Return Type: Long Integer.

The value represents the current Timer value (TTIM) for
task 0 only.

Remarks: This is a read-only property.
This property requires fast status to be enabled with
FSEnabled property.

COM6SRVR User’s Guide 30

Ethernet communication with 6K

Triggers Description: The Triggers property returns the Trigger Interrupt

Status (TTRIG).
Visual Basic: object.Triggers As Long
Visual C++: long object.GetTriggers()
Delphi: Longint_variable := Object_variable.Triggers
Parameter: NONE
Return Type: Long Integer.

The value represents the current state of the Trigger
Interrupt Status (TTRIG).

Remarks: This is a read-only property.
This property requires fast status to be enabled with
FSEnabled property.

UserStatus Description: The UserStatus property returns the current state of
the user status register (TUS).

Visual Basic: object.UserStatus As Long
Visual C++: long object.GetUserStatus()
Delphi: Longint_variable := Object_variable.UserStatus
Parameter: NONE
Return Type: Long Integer.

The value represents the current state of the user
status register (TUS).

Remarks: This is a read-only property.
This property requires fast status to be enabled with
FSEnabled property.

Var (varnum) Description: The Var property returns the value of the specified
real variable (VAR). Variables VAR1 through VAR12 may
be reported. NOTE: This property must be used in
conjunction with the Connect2 method (1Mode=2).

Visual Basic: object.Var(varnum As Integer) As Double
Visual C++: double object.GetVar(short varnum)
Delphi: double_variable := Object_variable.Var(varnum as

Smallint)
Parameter: varnum Short Integer

Represents number of the real variable
(VARvarnum). Range is 1-12.

Return Type: Double.
The value represents the value of the specified real
variable (VAR). The initial value is zero until an
Extended Fast Status packet arrives.

Remarks: This property is valid only with the first client
connection to 6K, when connected using Connect2 method
with 1Mode=2.
Read Only.
Requires FastStatus to be enabled, or use of
RequestFastStatusUpdate or NTSFS command, or generation
of an Alarm in the 6K.

COM6SRVR User’s Guide 31

Ethernet communication with 6K

VarB (varnum) Description: The VarB property returns the value of the specified

binary variable (VARB).
Visual Basic: object.VarB(varnum As Integer) As Long
Visual C++: long object.GetVarB(short varnum)
Delphi: Longint_variable := Object_variable.VarB(varnum as

Smallint)
Parameter: varnum Short Integer.

Represents number of the binary variable
(VARBvarnum). Range is 1-10.

Return Type: Long Integer.
The value represents the value of the specified binary
variable (VARB).

Remarks: This is a read-only property.
This property requires fast status to be enabled with
FSEnabled property.

VarI (varnum) Description: The VarI property returns the value of the specified
integer variable (VARI).

Visual Basic: object.VarI(varnum As Integer) As Long
Visual C++: long object.GetVarI(short varnum)
Delphi: Longint_variable := Object_variable.VarI(varnum as

Smallint)
Parameter: varnum Short Integer.

Represents number of the binary variable
(VARIvarnum). Range is 1-10.

Return Type: Long Integer.
The value represents the value of the specified integer
variable (VARI).

Remarks: This is a read-only property.
This property requires fast status to be enabled with
FSEnabled property.

COM6SRVR User’s Guide 32

COM6SRVR.GEM6K Interface – Ethernet communication with Gem6K

Ethernet Methods

Connect (netaddress) Description: The Connect method opens a connection to a Gem6K
controller.

Visual Basic: object.Connect(netaddress as String) As Integer
Visual C++: short object.Connect(LPCTSTR netaddress)
Delphi: Smallint_variable := Object_variable.Connect(netaddress

as String)
Parameter: netaddress String.

Represents the target controller’s IP
address.

Return Type: Short Integer.
If the connection is successfully opened, the method
returns a positive value representing the number of
connected clients. If the connection is unsuccessful,
then an error code is returned (see table on page 54).

Remarks: The Server can handle unlimited Ethernet connections
(to different IP addresses). The Gem6K takes up to one
minute for an Ethernet connection to truly expire and
be available for a new connection.

Background Commands: After a successful connection is
made, the following commands are sent to the
controller:
 !PORT0
 !ERRLVL4
 !EOT13,0,0
 !EOL13,10,0

ECHO mode is initially disabled (ECHO0) by the Gem6K
during Ethernet communications.

Connect3 (netaddress,
bQuiet, lTimeout)

Description: The Connect3 method opens a connection to a Gem6K
controller and allows specification of a special dialog
behavior and timeout connection period. Connect3 and
Connect are mutually exclusive.

Visual Basic: object.Connect3(netaddress as String, bQuiet as
Boolean, lTimeout as Long) As Integer

Visual C++: short object.Connect3(LPCTSTR netaddress, boolean
bQuiet, long lTimeout)

Delphi: Smallint_variable :=
Object_variable.Connect3(netaddress as String, bQuiet
as Boolean, lTimeout as Long)

Parameter: netaddress String.
Represents the target controller’s IP
address.

bQuiet Boolean
 Specifies whether the connection dialog will

be shown. True will hide the connection
dialog, false shows the connection dialog.

lTimeout Long integer
 A constant that specifies a timeout period

in mS for the Ethernet connection attempt.
The range for lTimeout is (0 – 60000).

Return Type: Short Integer.
If the connection is successfully opened, the method
returns a positive value representing the number of
connected clients. If the connection is unsuccessful,
then an error code is returned.

Remarks: The Server can handle unlimited Ethernet connections
(to different IP addresses). The Gem6K takes up to one
minute for an Ethernet connection to truly expire and
be available for a new connection.

COM6SRVR User’s Guide 33

Ethernet communication with Gem6K

Background Commands: After a successful connection is
made, the following commands are sent to the
controller:
 !PORT0
 !ERRLVL4
 !EOT13,0,0
 !EOL13,10,0

ECHO mode is initially disabled (ECHO0) by the Gem6K
during Ethernet communications.

Flush Description: The Flush method removes all characters from the
client’s receive buffer. This method allows the
programmer to clear the receive buffer prior to making
a read.

Visual Basic: object.Flush
Visual C++: void object.Flush()
Delphi: Object_variable.Flush
Parameter : NONE
Return Type: NONE
Remarks: USE WITH CAUTION. This method allows the programmer to

clear the receive buffer, such that a subsequent Read
call can yield a clean response. However, data arriving
in the receive buffer is asynchronous to the
application program and a thorough understanding of how
the application program is structured is necessary to
use this method correctly (for example, it would not be
beneficial to Flush the buffer if only a partial
response has been received).

GetFile (filename) Description: The GetFile method is used to upload programs currently
stored in the controller.

Visual Basic: object.GetFile(filename as String) As Long
Visual C++: long object.GetFile(LPCTSTR filename)
Delphi: Longint_variable := Object_variable.GetFile(filename as

String)
Parameter: filename String.

Represents the name of the file to store the
uploaded programs. If the filename is an
empty string, then the user will be prompted
for the filename.

Return Type: Long integer.
The method returns a positive value if the operation is
successful; otherwise, it returns an error code (see
table on page 54).

Remarks: Background Commands: At the beginning of a file upload
operation, these commands are sent to the controller:
 !PORT0
 !ERRLVL0
 !EOT1,0,0
 !EOL10,0,0
 !ECHO0
 !TDIR

For each program selected for upload, a “!TPROG”
command is also sent to the controller.

After the upload process is completed, these commands
are sent to the controller:
 !ERRLVL4
 !EOT13,0,0
 !EOL13,10,0

COM6SRVR User’s Guide 34

Ethernet communication with Gem6K

IsWatchdogTimedOut Description: The IsWatchdogTimedOut method interrogates the current

status of the Ethernet Watchdog. The Ethernet Watchdog
is a handshake established between the COM6SRVR and the
Gem6K to monitor that the Ethernet connection is still
active and “connected”.

Visual Basic: object.IsWatchdogTimedOut As Boolean
Visual C++: BOOL IsWatchdogTimedOut()
Delphi: Boolean_variable := Object_variable.IsWatchdogTimedOut
Parameter: NONE
Return Type: Boolean.

A True indicates that the Ethernet connection has been
lost (possible causes: the Gem6K was reset, or the
Ethernet connection was broken). The property is
cleared when a new Ethernet connection is established.

Remarks: For further information, refer to the SetWatchdog
method on page 41.

PingGem6K(netaddress,
lTimeout)

Description: The PingGem6K method attempts to ping the Gem6K at the
IP Address specified.

Visual Basic: object.Ping(netaddress as String, lTimeout as Long) As
Long

Visual C++: long Ping(LPCTSTR netaddress, long lTimeout)
Delphi: Long_variable := Object_variable.Ping(netaddress as

String, lTimeout as long)
Parameter: netaddress String.

 Represents the target controller’s IP
 address.

lTimeout Long integer
Timeout period in mS for PingGem6K. The
range for lTimeout is (0 – 30000).

Return Type: Long.
The method returns a positive value if the operation is
successful; otherwise, it returns an error code (see
table on page 54).

Remarks:

Read () Description: The Read method retrieves command responses from the
controller.

Visual Basic: object.Read() As String
Visual C++: CString object.Read()
Delphi: String_variable := Object_variable.Read
Parameter: NONE
Return Type: String.

The read method does not wait for incoming responses
from the controller. It returns immediately with a
string containing the controller’s response at the time
of the request. If no response is available, this
method returns an empty string. The Read method
response is limited to 256 characters. If the response
is longer than 256 characters, the excess characters
will remain in the COM6SRVR buffer. Multiple reads are
necessary for long responses.

Remarks: You should disable Timer events in VB5 and VBScript
when reading and writing to the COM6SRVR (see Microsoft
Support Online Article ID176399).

COM6SRVR User’s Guide 35

Ethernet communication with Gem6K

RequestFastStatusUpdate Description: The RequestFastStatusUpdate method allows the COM6SRVR

to request a fast status update as needed, without
having to enable the fast status “Streaming Mode”
(FSEnabled) or set an update interval (FSUpdateRate).

Visual Basic: object.RequestFastStatusUpdate As Integer
Visual C++: short object.RequestFastStatusUpdate
Parameter: NONE
Return Type: Short integer.

If the RequestFastStatusUpdate call is successful the
method returns the number of bytes sent. If the call is
unsuccessful, the method returns a negative error code
(see error code table on page 54).

Remarks: This method is one of two “On Demand” fast status
update options. The other option is for the Gem6K to
execute the NTSFS command. Using an On Demand update
technique is more efficient for interactive PC
applications than the Streaming Mode, and reduces
network traffic. For an overview of using the fast
status, refer to page 57.

SendFile (filename) Description: The SendFile method is used to download program files
to the controller.

Visual Basic: object.SendFile(filename as String) As Long
Visual C++: long object.SendFile(LPCTSTR filename)
Delphi: Longint_variable := Object_variable.SendFile(filename

as String)
Parameter: filename String.

Represents the name of the program file
(containing Gem6K programs/code) to be
downloaded. If the filename is an empty
string, then the user will be prompted for
the filename.

Return Type: Long integer.
The method returns a positive value if the operation is
successful; otherwise, it returns an error code (see
table on page 54).

Remarks: To speed up downloads, the SendFile method strips
comments from the downloaded Gem6K code. That is, all
text between the comment delimiter (semi-colon) and the
command delimiter (carriage return or line feed) is
removed.

Background Commands: At the beginning of a file
download operation, these commands are sent to the
controller:
 !PORT0
 !ERRLVL0

After the download process is completed, these commands
are sent to the controller:
 !PORT0
 !ERRLVL4
 !EOT13,0,0
 !EOL13,10,0

NOTE: If the download process is canceled, an “END”
command is sent to the controller.

COM6SRVR User’s Guide 36

Ethernet communication with Gem6K

SendFileBlocking
(filename)

Description: This method, like the SendFile method,is used to
download program files to the controller. It differs
from SendFile in that it blocks the return of the
method call until the Gem6K acknowledges that the file
has been downloaded. A dialog informs the user to wait
for the Gem6K to acknowledge. The dialog has a CANCEL
button (a software specified Timeout is not provided).
If the user clicks the CANCEL button, the method
returns the error code –20.

Visual Basic: object.SendFileBlocking(filename as String) As Long
Visual C++: long object.SendFileBlocking(LPCTSTR lpFileName)
Delphi: Longint_variable :=

Object_variable.SendFileBlocking(filename as String)
Parameter: filename String.

Represents the name of the program file
(containing Gem6K programs/code) to be
downloaded. If the filename is an empty
string, then the user will be prompted for
the filename.

Return Type: Long integer.
The method returns a positive value if the operation is
successful; otherwise, it returns an error code (error
code -20 is returned when the user clicks the CANCEL
button).

Remarks: To speed up downloads, the SendFileBlocking method
strips comments from the downloaded Gem6K code. That
is, all text between the comment delimiter (semi-colon)
and the command delimiter (carriage return or line
feed) is removed.

Background Commands: (same as SendFile)

NOTE: If the download process is canceled, an "END"
command is sent to the controller and the error code (-
20) is returned.

SendFileQuiet (filename) Description: The SendFileQuiet method is used to download program
files to the controller while suppressing the download
status dialog message.

Visual Basic: object.SendFileQuiet(filename as String) As Long
Visual C++: long object.SendFileQuiet(LPCTSTR lpFileName)
Delphi: Longint_variable :=

Object_variable.SendFileQuiet(filename as String)
Parameter: filename String.

Represents the name of the program file
(containing 6K or Gem6K programs/code) to be
downloaded. If the filename is an empty
string, then the user will be prompted for
the filename.

Return Type: Long integer.
The method returns a positive value if the operation is
successful; otherwise, it returns an error code (see
table on page 54).

Remarks: To speed up downloads, the SendFileQuiet method strips
comments from the downloaded code. That is, all text
between the comment delimiter (semi-colon) and the
command delimiter (carriage return or line feed) is
removed.

NOTE: The SendFileQuiet method should be called when
motion is not in progress and programs are not running.

Background Commands: At the beginning of a file
download operation, these commands are sent to the
controller:

COM6SRVR User’s Guide 37

Ethernet communication with Gem6K

!PORT0
!ECHO0
!ERRLVL0
!EOT1,0,0
!EOL10,0,0
!TDIR

After the download process is completed, these commands
are sent to the controller:

!PORT0
!EOT13,0,0
!EOL13,10,0
!ERRLVL4
!ECHO1

NOTE: If the download process is canceled, an "END"
command is sent to the controller.

SendFileQuietBlocking
(filename)

Description: This method, like the SendFileQuiet method, is used to
download program files to the controller while
suppressing the download dialog. It differs from
SendFileQuiet in that it blocks the return of the
method call until the Gem6K acknowledges that the file
has been downloaded. A dialog informs the user to wait
for the Gem6K to acknowledge. The dialog has a CANCEL
button (a software specified Timeout is not provided).
If the user clicks the CANCEL button, the method
returns the error code –20.

Visual Basic: object.SendFileQuietBlocking(filename as String) As
Long

Visual C++: long object.SendFileQuietBlocking(LPCTSTR lpFileName)
Delphi: Longint_variable :=

Object_variable.SendFileQuietBlocking(filename as
String)

Parameter: filename String.
Represents the name of the program file
(containing Gem6K programs/code) to be
downloaded. If the filename is an empty
string, then the user will be prompted for
the filename.

Return Type: Long integer.
The method returns a positive value if the operation is
successful; otherwise, it returns an error code (error
code -20 is returned when the user clicks the CANCEL
button).

Remarks: To speed up downloads, the SendFileQuietBlocking method
strips comments from the downloaded Gem6K code. That
is, all text between the comment delimiter (semi-colon)
and the command delimiter (carriage return or line
feed) is removed.

Background Commands: (same as SendFile)

NOTE: If the download process is canceled, an "END"
command is sent to the controller and the error code (-
20) is returned.

SendVariable
(nVariableMask, vaValue)

Description: The SendVariable method sends one variable from the
variable packet to the Gem6K controller.

Visual Basic: object.SendVariable(nVariableMask As Long, vaValue As
Variant) As Integer

Visual C++: short object.SendVariable(long nVariableMask, const
VARIANT FAR& vaValue)

Parameter: nVariableMask Long integer.
Specifies the one variable to be
sent. Constants are defined for the
mask bits (mask bits for Visual Basic
and Visual C++ are provided below).

COM6SRVR User’s Guide 38

Ethernet communication with Gem6K

Only one bit can be set in the
nVariableMask.

vaValue Variant.
Specifies the value of the variable
to be sent. The actual variable being
sent is specified by the
nVariableMask. Because the
SendVariable Method can be used to
send integer, real or binary
variables, the data type can either
be a long integer or a double
floating point value. Using a Variant
parameter allows the flexibility of
sending any integer type, while
allowing the COM6SRVR to cast the
Variant into the appropriate data
type.

Return Type: Short integer.
If the SendVariable call is successful, the method
returns the number of bytes sent. If the call is
unsuccessful, the method returns a negative error code
(see error code table on page 54). Errors codes are
returned if more than one bit is set in the
nVariableMask or if the Variant data type is
incompatible. Error codes are also returned if there
are Ethernet communications errors.

Remarks: Refer to page 59 for an overview of using Send
Variables packets.
The data range of real variables in the Gem6K and the
number of significant figures available in a double
data type in the PC programming language may cause some
rounding errors. The Gem6K can store data with greater
significance, but with a smaller range of values (refer
to the VAR command in the Gem6K Series Command
Reference and to your PC programming language
reference).

Variable Packet Mask Bits for Visual Basic Variable Packet Mask Bits for Visual C++
Public Const VARI1 As Long = 1
Public Const VARI2 As Long = 2
Public Const VARI3 As Long = 4
Public Const VARI4 As Long = 8
Public Const VARI5 As Long = 16
Public Const VARI6 As Long = 32
Public Const VARI7 As Long = 64
Public Const VARI8 As Long = 128
Public Const VARI9 As Long = 256
Public Const VARI10 As Long = 512
Public Const VARI11 As Long = 1024
Public Const VARI12 As Long = 2048

Public Const VAR1 As Long = 4096
Public Const VAR2 As Long = 8192
Public Const VAR3 As Long = 16384
Public Const VAR4 As Long = 32768
Public Const VAR5 As Long = 65536
Public Const VAR6 As Long = 131072
Public Const VAR7 As Long = 262144
Public Const VAR8 As Long = 524288
Public Const VAR9 As Long = 1048576
Public Const VAR10 As Long = 2097152
Public Const VAR11 As Long = 4194304
Public Const VAR12 As Long = 8388608

Public Const VARB1 As Long = 16777216
Public Const VARB2 As Long = 33554432
Public Const VARB3 As Long = 67108864
Public Const VARB4 As Long = 134217728
Public Const VARB5 As Long = 268435456
Public Const VARB6 As Long = 536870912
Public Const VARB7 As Long = 1073741824
Public Const VARB8 As Long = &H80000000

#define VARI1 0x00000001
#define VARI2 0x00000002
#define VARI3 0x00000004
#define VARI4 0x00000008
#define VARI5 0x00000010
#define VARI6 0x00000020
#define VARI7 0x00000040
#define VARI8 0x00000080
#define VARI9 0x00000100
#define VARI10 0x00000200
#define VARI11 0x00000400
#define VARI12 0x00000800

#define VAR1 0x00001000
#define VAR2 0x00002000
#define VAR3 0x00004000
#define VAR4 0x00008000
#define VAR5 0x00010000
#define VAR6 0x00020000
#define VAR7 0x00040000
#define VAR8 0x00080000
#define VAR9 0x00100000
#define VAR10 0x00200000
#define VAR11 0x00400000
#define VAR12 0x00800000

#define VARB1 0x01000000
#define VARB2 0x02000000
#define VARB3 0x04000000
#define VARB4 0x08000000
#define VARB5 0x10000000
#define VARB6 0x20000000
#define VARB7 0x40000000
#define VARB8 0x80000000

COM6SRVR User’s Guide 39

Ethernet communication with Gem6K

SendVariablePacket
(vaPacket)

Description: The SendVariablePacket method sends a packet of
variables to the Gem6K controller. A complete packet of
variables (comprising Gem6K integer variables 1-12,
real variables 1-12 and binary variables 1-8) are
always sent. (Refer to the Variable Structures listed
below for VB and VC++.) Also included in the packet is
a mask, which allows specific variables to be write-
protected or over-written.

Visual Basic: object.SendVariablePacket(vaPacket As Variant) As
Integer

Visual C++: short object.SendVariablePacket (const VARIANT FAR&
vaPacket)

Parameter: vaPacket Variant.
An array of bytes representing the
SendVariable packet. The array of bytes
comprise: mask bits, reserved elements and
bytes of data for the variables. To send a
variable packet:

1. Create a structure (TypeDef) and populate the
structure with the mask and the variable values.

2. Create an array of bytes from the structure (VB
uses Windows API function CopyMemory, Visual C++
uses SAFEARRAYS).

3. Pass the array of bytes as a Variant to the
SendVariablePacket method.

Refer also to the examples in the SimpleOnePlus sample
VB application.

Return Type: Short integer.
If the SendVariablePacket call is successful the method
returns the number of bytes sent. If the call is
unsuccessful, the method returns a negative error code
(see error code table on page 54). Errors codes are
returned if the variant data type is incompatible or if
there are Ethernet communication errors.

Remarks: Refer to page 59 for an overview of using Send
Variables packets.
A list of mask bits for Visual Basic and Visual C++ is
provided in the SendVariables method description above.

The data range of real variables in the Gem6K and the
number of significant figures available in a double
data type in the PC programming language may cause some
rounding errors. The Gem6K can store data with greater
significance, but with a smaller range of values (refer
to the VAR command in the Gem6K Series Command
Reference and to your PC programming language
reference).

Variable Structure for Visual Basic Variable Structure for Visual C++
Type SendVariableStructure
 Mask As Long
 Reserved1 As Long
 Reserved2 As Long
 Reserved3 As Long
 VarI(1 To 12) As Long
 VarR(1 To 12) As Double
 VarB(1 To 8) As Long
End Type

typedef struct VARIABLEPACKETStruct {
 int nVariableMask;
 int nReserved1;
 int nReserved2;
 int nReserved3;
 int VARI[12];
 double VAR[12];
 int VARB[8];
} VARIABLEPACKET, *LPVARIABLEPACKET;

COM6SRVR User’s Guide 40

Ethernet communication with Gem6K

SetSendFileDelay (delay) Description: SetSendFileDelay allows you to specify the delay for

each character when making a call to the SendFile
method. (see Remarks below for detail)

Visual Basic: object.SetSendFileDelay(delay As Integer) As Integer
Visual C++: short object.SetSendFileDelay(short delay)
Parameter: delay Integer.

The parameter specifies the delay for each
character transmitted. Valid range is 0-100
(milliseconds). 0 = no delay.

Return Type: Short integer.
Returns zero if the specified delay is valid. If the
specified delay is out of range, error code –11 is
returned.

Remarks: When making a call to the SendFile Ethernet method, a
2-ms per character delay is inserted to allow the
commands to be transmitted and processed through the
TCP/IP stack and the Gem6K internal buffers. In some
cases the delay is not necessary, because the TCP/IP
stack takes care of flow-control. In other cases, it
might be desirable to allow a longer delay, such as
when sending data over a very busy network. This method
provides a means to control the delay, allowing a delay
of 0-100 ms per character.

SetWatchdog (wTimeout,
wTicker)

Description: The SetWatchdog method enables Ethernet watchdog hand-
shaking between the COM6SRVR and the Gem6K Controller.

Visual Basic: object.SetWatchdog(wTimeout as Integer, wTicker as
Integer) as Integer

Visual C++: short SetWatchdog(short wTimeout, short wTicker)
Delphi: Smallint_variable :=

Object_variable.SetWatchdog(wTimeout as Smallint,
wTicker as Smallint)

Parameters: wTimeout . Timeout period in seconds (see guidelines
below)
wTicker .. Number of “heartbeat” packets to send during
the timeout period

Return Type: Short integer.
Returns zero if successful, or a negative error value
(usually –11, which indicates that an invalid
configuration was specified).

Remarks: The Ethernet watchdog allows the COM6SRVR and Gem6K
Controller to gracefully recover when communication
between the Gem6K and COM6SRVR is lost. Such situations
might arise from the loss of power to the Gem6K or to
the PC while an Ethernet connection was active. By
enabling the Watchdog, a heartbeat packet is sent
periodically by the COM6SRVR. The Gem6K detects the
heartbeat and echoes it back to the COM6SRVR. If the
COM6SRVR does not detect the echoed heartbeat (within
the constraints set by the wTimeout and wTicker
parameters), the watchdog is considered timed out. If
the Gem6K does not receive the heartbeat (within the
same wTimeout and wTicker constraints), the Gem6K
considers the watchdog timed out.

Loss or delay of a single echoed heartbeat could happen
quite frequently on a busy network connection.
Therefore, we provide a method whereby a number of re-
tries are attempted over a specific timeout period. If
all re-tries fail within the timeout period, then the
watchdog is considered to have timed out. This
functionality is provided by the wTimeout and wTicker
parameters. The constraints for these parameters are as
follows:

• To enable the watchdog, set wTimeout > 0 > wTicker.
• To disable the watchdog, set wTimeout = 0 and set

wTicker = 0.

COM6SRVR User’s Guide 41

Ethernet communication with Gem6K

• The wTimeout/wTicker ratio must be ≤ 65.

RECOMMENDATION: Set wTimeout = 100 and wTicker = 5,
which provides a heartbeat once every twenty seconds
(100 seconds / 5 tries = 20 seconds/attempt). If none
of the 5 heartbeats are acknowledged in 100 seconds,
the watchdog times out.

WHEN A WATCHDOG TIMEOUT OCCURS:

• In the Gem6K: When the Gem6K detects a watchdog
timeout, it attempts to send an alarm packet to the
COM6SRVR (AlarmStatus bit #22 – see page 44). It
then closes the Ethernet connection and reports
“disconnected” in the TNT report. If the user has
enabled error-checking bit #22 (ERROR.22-1), the
Gem6K will execute a GOSUB branch to the ERRORP
program. Within the ERRORP program, the watchdog
timeout can be cleared by disabling ERROR bit #22
(ERROR.22-0).

• In the COM6SRVR: When the COM6SRVR detects a
watchdog timeout, the IsWatchdogTimedOut method (see
page 35) returns TRUE. (If the COM6SRVR receives the
alarm packet from the Gem6K, it will also display an
alert dialog to the user.) A client application can
poll the IsWatchdogTimedOut. When a timeout is
detected by the COM6SRVR, the Client application
should “disconnect” the COM6SRVR (if using VB, set
COM6SRVR object to Nothing. If using VC++, use
ReleaseDispatch). After the COM6SRVR has been
disconnected, creating a new Com6srvr object and
“connecting” Ethernet will clear the watchdog
timeouts. All client applications for that
particular Gem6K Ethernet connection should be
disconnected.

Write (cmd) Description: The Write method is used to send commands to the
controller.

Visual Basic: object.Write(cmd as String) As Integer
Visual C++: short object.Write(LPCTSTR cmd)
Delphi: Smallint_variable := Object_variable.Write(cmd as

String)
Parameter: cmd String.

A string of commands to be sent. Multiple
commands can be sent, but each command
should be separated with a valid Gem6K
command delimiter (colon, carriage return,
or line feed). The command string should be
limited to 256 characters or less. Larger
command strings may cause an overflow in the
Gem6K’s command buffer.

Return Type: Short integer.
This method returns a positive value corresponding to
the number of bytes sent, or a negative error code (see
table on page 54).

Remarks: You should disable Timer events in VB5 and VBScript
when reading and writing to the COM6SRVR (see Microsoft
Support Online Article ID176399).

COM6SRVR User’s Guide 42

Ethernet communication with Gem6K

WriteBlocking (cmd,
timeout)

Description: The WriteBlocking method, an alternative to the Write
method, is used to send commands to the controller. The
primary difference from the Write method is that
WriteBlocking does not return from the method call
until the commands have been executed in the controller
within a specified time.

Visual Basic: object.WriteBlocking(cmd As String, timeout As Integer)
As Integer

Visual C++: short object.WriteBlocking(LPCTSTR cmd, short timeout)
Parameter: cmd String.

A string of commands to be sent. Multiple
commands can be sent, but each command
should be separated with a valid Gem6K
command delimiter (colon, carriage return,
or line feed). The command string should be
limited to 256 characters or less. Larger
command strings may cause an overflow in the
Gem6K’s command buffer.

timeout Integer.
Specifies the time period to wait for
acknowledgement from the Gem6K. The time is
specified in milliseconds. A value of zero
specifies an infinite period.

Return Type: Short integer.
This method returns a positive value corresponding to
the number of bytes sent, or a negative error code.
Error code –19 indicates a timeout.

Remarks: The WriteBlocking method can be used as an alternative
to the Write method. The discussion below outlines the
benefits of the WriteBlocking method, as compared to
the Write method.
The Write method sends commands to the Gem6K by placing
commands into the TCP/IP send buffer. The Write method
then returns when the last Gem6K command has been
placed into the TCP/IP buffer. If the Gem6K is busy
performing motion or processing commands from the
buffer, the Write method is very likely to return
before the recently written commands are executed
within the Gem6K.
The WriteBlocking method sends commands to the Gem6K by
placing commands into the TCP/IP send buffer, just like
the Write method. However, WriteBlocking does not
return from the method call until the command has been
executed within the Gem6K controller. To prevent a
permanently blocked call, a timeout parameter has been
added to allow the function to return in the event that
the Gem6K controller does not execute the commands
within a specified time.
The WriteBlocking functions by requesting an
acknowledgement from the Gem6K that the commands have
been executed. A timeout can occur for several reasons:
loss of power to the Gem6K, the Ethernet cable is
disconnected, processing of commands took longer than
expected, an error occurred within the applications
(such as, a KILL occurred or the Gem6K program has
jumped to the error routine).
NOTE: You should disable Timer events in VB5 and
VBScript when reading and writing to the COM6SRVR (see
Microsoft Support Online Article ID176399).

COM6SRVR User’s Guide 43

Ethernet communication with Gem6K

Ethernet Properties
Bit Status Convention

When retrieving bit-oriented properties (e.g., AxisStatus, ErrorStatus, Limits, SystemStatus, etc.) note that
the convention in the Gem6K programming language differs from the convention used for C and Assembly
programming languages. Compumotor’s Gem6K convention is to refer to the bits within a 32 bit long
integer as bits 1 through 32 (left to right). The C and Assembler Programmer's convention refers to these
as bits 0 through 31 (right to left). When masking these bits, you should be aware of this subtle difference
when referring to Gem6K documentation.

ActualAccel Description: The ActualAccel property returns the current actual
acceleration (TACCA).

Visual Basic: object.ActualAccel as Long
Visual C++: long object.GetActualAccel()
Delphi: Longint_variable := Object_variable.ActualAccel
Parameter: NONE
Return Type: Long Integer.

The value represents the current actual acceleration
(TACCA) in counts.

Remarks: This is a read-only property.
This property requires fast status to be enabled with
FSEnabled property.

ActualTorque Description: The ActualTorque property returns the current actual
torque (TTRQA).

Visual Basic: object.ActualTorque as Long
Visual C++: long object.GetActualTorque()
Delphi: Longint_variable := Object_variable.ActualTorque
Parameter: NONE
Return Type: Short Integer.

The value represents the current actual torque (TTRQA).
A value of -32,768 corresponds to 100% of torque or
force in the negative direction based on the DMTSCL
command. A value of +32,767 corresponds to 100% of
torque or force in the positive direction based on the
DMTSCL command.

Remarks: This is a read-only property.
This property requires fast status to be enabled with
FSEnabled property.

ActualVelocity Description: The ActualVelocity property returns the current actual
velocity (TVELA).

Visual Basic: object.ActualVelocity as Long
Visual C++: long object.GetActualVelocity()
Delphi: Longint_variable := Object_variable.ActualVelocity
Parameter: NONE
Return Type: Long Integer.

The value represents the current actual velocity
(TVELA) in counts.

Remarks: This is a read-only property.
This property requires fast status to be enabled with
FSEnabled property.

AlarmStatus (bit) Description: The AlarmStatus property returns the state of the
controller’s alarm status.

Visual Basic: object.AlarmStatus(bit As Integer) as Long
Visual C++: long object.GetAlarmStatus(short bit)
Delphi: Longint_variable := Object_variable.AlarmStatus(bit as

Smallint)
Parameter: bit Short Integer.

Specifies the status bit of the alarm status to
return. It can be a number between 0 and 32.

COM6SRVR User’s Guide 44

Ethernet communication with Gem6K

Values between 1-32 represent the alarm bits as
described in the table below (refer also to the
INTHW command). Specifying a bit value of 0
returns the entire 32 bit alarms status as a long
value; otherwise a value of 1 or 0 is returned to
indicate the state of any single bit. When any
single bit status is retrieved using the
AlarmStatus property, that bit status is
automatically cleared by the Communications
Server. If a bit value of 0 is used then all
alarm status bits are cleared.

Return Type: Long Integer.
Remarks: When the Gem6K sends an alarm packet to the COM6SRVR,

the FastStatus structure is automatically updated,
regardless of state of FSEnabled.

Bit # Function **
 1 Software (forced) Alarm #1
 2 Software (forced) Alarm #2
 3 Software (forced) Alarm #3
 4 Software (forced) Alarm #4
 5 Software (forced) Alarm #5
 6 Software (forced) Alarm #6
 7 Software (forced) Alarm #7
 8 Software (forced) Alarm #8
 9 Software (forced) Alarm #9
 10 Software (forced) Alarm #10
 11 Software (forced) Alarm #11
 12 Software (forced) Alarm #12
 13 Command Buffer Full
 14 ENABLE input Activated
 15 Program Complete
 16 Drive Fault

 Bit # Function
 17 Reserved
 18 Reserved
 19 Limit Hit - hard or soft limit
 20 Stall Detected (stepper)
 or Position Error (servo)
 21 Timer (TIMINT)
 22 Ethernet fail (RESET or ER.22 occurred)
 (also invokes an error dialog)
 23 Input - any of the inputs defined by
 INFNCi-I or LIMFNCi-I
 24 Command Error
 25 Motion Complete
 26 Reserved
 27 Reserved
 28 Reserved
 29 Reserved
 30 Reserved
 31 Reserved
 32 Reserved

** Bits 1-12: software alarms are forced with the INTSW command.

AnalogInput (channel)

Description: The AnalogInput property returns the value (in counts)
of the specified analog input.

Visual Basic: object.AnalogInput(channel As Integer) As Long
Visual C++: short object.GetAnalogInput(short channel)
Delphi: Smallint_variable :=

Object_variable.AnalogInput(channel as Smallint)
Parameter: channel Short Integer.

Specifies the analog input channel (channel
1 or 2) value to return. This property uses
only the first two analog inputs detected on
an I/O brick connected to the Gem6K,
regardless of the ANIEN (analog input
enable) setting.

Return Type: Short integer.
The method returns the specified analog input value in
counts.

Remarks: Requires fast status to be enabled with FSEnabled
property.

AxisStatus Description: Use the AxisStatus property to retrieve the current

axis status (TAS).
Visual Basic: object.AxisStatus As Long
Visual C++: long object.GetAxisStatus()
Delphi: Longint_variable := Object_variable.AxisStatus
Parameter: NONE
Return Type: Long Integer.

The long integer value represents the current axis

COM6SRVR User’s Guide 45

Ethernet communication with Gem6K

status. Refer to the TAS command description for a list
of the status elements.

Remarks: Requires fast status to be enabled with FSEnabled
property.

CommandCount Description: Use the CommandCount property to ascertain how many

Gem6K commands have been executed (outside of defined
programs) since the Gem6K controller was powered up.

Visual Basic: object.CommandCount As Long
Visual C++: long object.GetCommandCount()
Delphi: Longint_variable := Object_variable.CommandCount
Parameter: NONE
Return Type: Long Integer.

The value represents the number of Gem6K commands which
have been executed outside of defined programs, since
the Gem6K controller was powered up.

Remarks: This is a read-only property.
This property allows users to track when commands being
sent to the controller (via the communications ports)
have been executed. The value is reset to zero each
time power is cycled on the Gem6K. The return value is
affected by any background commands sent in conjunction
with the Connect, GetFile, and SendFile methods.
This property requires fast status to be enabled with
the FSEnabled property.

CommandedTorque Description: The CommandedTorque property returns the current
commanded torque (TTRQ).

Visual Basic: object.CommandedTorque as Long
Visual C++: long object.GetCommandedTorque()
Delphi: Longint_variable := Object_variable.CommandedTorque
Parameter: NONE
Return Type: Short Integer.

The value represents the current commanded torque
(TTRQ). A value of -32,768 corresponds to 100% of
torque or force in the negative direction based on the
DMTSCL command. A value of +32,767 corresponds to 100%
of torque or force in the positive direction based on
the DMTSCL command.

Remarks: This is a read-only property.
This property requires fast status to be enabled with
FSEnabled property.

ConfigurationStatus Description: Use the ConfigurationStatus property to retrieve the

current configuration status (TCS).
Visual Basic: object.ConfigurationStatus As Long
Visual C++: long object.GetConfigurationStatus()
Delphi: Longint_variable := Object_variable.

ConfigurationStatus
Parameter: NONE
Return Type: Short Integer.

The short integer value represents the current
configuration status. Refer to the TCS command
description for a list of the status elements.

Remarks: Requires fast status to be enabled with FSEnabled
property.

COM6SRVR User’s Guide 46

Ethernet communication with Gem6K

Counter Description: The Counter property returns the current Time Frame

Counter value.
Visual Basic: object.Counter As Integer
Visual C++: short object.GetCounter()
Delphi: Smallint_variable := Object_variable.Counter
Parameter: NONE
Return Type: Short Integer.

The values represents the current Time Frame Counter
value.

Remarks: This is a read-only property.
The Time Frame Counter is a free-running timer in the
controller. The Counter is updated at the System Update
Rate (2 milliseconds).
This property requires fast status to be enabled with
the FSEnabled property.

EncoderPos Description: The EncoderPos property returns the current encoder
position (TPE) in counts.

Visual Basic: object.EncoderPos As Long
Visual C++: long object.GetEncoderPos()
Delphi: Longint_variable := Object_variable.EncoderPos
Parameter: NONE
Return Type: Long Integer.

The value represents the current encoder position (TPE)
in counts.

Remarks: This is a read-only property.
Requires fast status to be enabled with FSEnabled
property.

ErrorStatus Description: The ErrorStatus property returns the current error
status (TER) of task 0 only.

Visual Basic: object.ErrorStatus As Long
Visual C++: long object.GetErrorStatus()
Delphi: Longint_variable := Object_variable.ErrorStatus
Parameter: NONE
Return Type: Long Integer.

The values represents the current error status (TER) of
task 0 only.

Remarks: Requires fast status to be enabled with FSEnabled
property

ExtendedAxisStatus Description: Use the ExtendedAxisStatus property to retrieve the

current extended axis status (TASX).
Visual Basic: object.ExtendedAxisStatus As Long
Visual C++: long object.GetExtendedAxisStatus()
Delphi: Longint_variable := Object_variable.ExtendedAxisStatus
Parameter: NONE
Return Type: Long Integer.

The long integer value represents the current extended
axis status. Refer to the TASX command description for
a list of the status elements.

Remarks: Requires fast status to be enabled with FSEnabled
property.

FastStatus Description: The FastStatus property returns the entire FastStatus

data structure.
Visual Basic: object.FastStatus As Variant
Visual C++: VARIANT object.GetFastStatus()
Delphi: Variant_variable := Object_variable.FastStatus
Parameter: NONE

COM6SRVR User’s Guide 47

Ethernet communication with Gem6K

Return Type: Variant.
The variant represents the value of the entire
FastStatus data structure.

Remarks: This property allows for faster, more efficient
retrieval of the FastStatus information if multiple
FastStatus items need to be checked at once. The
variant is essentially a byte array which can be mapped
into a FastStatus structure (see table below for
FastStatus structure). The Fast Status structure
includes ten integer (VARI) variables and ten binary
(VARB) variables that you can use to customize the Fast
Status content.
Refer to the VB5 sample application SimpleOne in the
subroutine cmdGetData_Click() for details of how to
convert the byte array data into a Fast Status
structure (User Defined Type). Refer to the VC5 sample
application VC_Ethernet in the subroutine
MakeFastStatus for details on how to convert from a
byte array into a Fast Status TypeDef. VBScript does
not allow use of structures – use the properties
Inputs() and MotorPos().
NOTE: This property requires fast status to be enabled
with FSEnabled property.
NOTE: When the object is first created, the FastStatus
data will read zeroes. There after, it will report the
most recently updated values. When FSEnabled is set to
FALSE, the FastStatus structure will retain the values
from the last update. When the Gem6K sends an alarm
packet to the COM6SRVR, the FastStatus structure is
automatically updated, regardless of state of
FSEnabled.

Fast Status — Packet Data Definition (280 bytes total)

Type Description Bytes
WORD wUpdateID Unique update ID for synch channel 2
WORD wCounter Time Frame Counter 2
DWORD dwMotorPos Commanded Position (TPC) 4
DWORD dwEncPos Encoder Position (TPE) 4
DWORD dwMotorVel Commanded Velocity (TVEL) 4
DWORD dwAxisStatus Axis Status (TAS) 4
DWORD dwSystemStatus System Status (TSS) 4
DWORD dwErrorStatus Error Status (TER) 4
DWORD dwUserStatus User Status (TUS) 4
DWORD dwTimer Timer (TTIM) 4
DWORD dwLimits Limit Status (TLIM) 4
DWORD dwInputs[4] Input Status (TIN) 16
DWORD dwOutputs[4] Output Status (TOUT) 16
DWORD dwTriggers Trigger Status (TTRIG) 4
WORD wAnalogIn[2] Analog Input Value (TANI - in counts) 4
DWORD dwVarb[10] Binary Variable Values (VARB1 through VARB10) 40
DWORD dwVari[10] Integer Variable Values (VARI1 through VARI10) 40
DWORD dwIPAddress IP Address (NTADDR) 4
DWORD dwCmdCount Command Count 4
DWORD dwVar[12] Real Variable Values (VAR1 through VAR12) 96
DWORD dwAccActual Actual Acceleration (TACCA) 4
DWORD dwExAxisStatus Extended Axis Status (TASX) 4
WORD wConfigurationStatus Configuration Status (TCS) 2
WORD wSettlingTime Settling Time (TSTLT) 2
WORD wTorqueCmd Commanded Torque (TTRQ) 2
WORD wTorqueActual Actual Torque (TTRQA) 2
DWORD dwVelActual Actual Velocity (TVELA) 4

COM6SRVR User’s Guide 48

Ethernet communication with Gem6K

FSEnabled Description: The FSEnabled property sets or returns the state of

FastStatus polling.
Visual Basic: object.FSEnabled As Boolean
Visual C++: Read: BOOL object.GetFSEnabled()

Write: void object.SetFSEnabled(BOOL state)
Delphi: Read: Boolean_variable := Object_variable.FSEnabled

Write: Object_variable.FSEnabled := (state as Boolean)
Parameter: Boolean (read/write property).
Return Type: Boolean (read/write property).
Remarks: The table above lists the items in the FastStatus

structure. If the FSEnabled property is set to TRUE,
then FastStatus information is automatically retrieved
from the controller on a continual basis. BE AWARE
that enabling automatic FastStatus polling provides
fresh data from the controller on a continual basis,
but this will impair the controller’s processing time
and create a high volume of traffic over the Ethernet
network interface.
If you intend to enable automatic FastStatus polling,
be sure to first set the FSUpdateRate property
accordingly. If the FSEnabled property is set to
FALSE, automatic FastStatus polling is turned off (but
the FastStatus structure will retain the values from
the last update).

FSUpdateRate

Description: The FSUpdateRate property is used to set the
millisecond interval on which the controller
automatically updates its FastStatus information.

Visual Basic: object.FSUpdateRate As Integer
Visual C++: Read: short object.GetFSUpdateRate()

Write: void object.SetFSUpdateRate(short rate)
Delphi: Read: Smallint_variable := Object_variable.FSUpdateRate

Write: Object_variable.FSUpdateRate := (rate as
Smallint)

Parameter: Short Integer (read/write property).
Return Type: Short Integer (read/write property).
Remarks: This property should be set before the FSEnabled

property is set to TRUE. Setting a larger value for
this property means that information will be update
less frequently, thereby consuming less of the
controller’s processing resources. A small value will
provide for more frequent updates, but consume more
processing time. Valid values for this property are
from 10 to 65536.
Visual Basic Users: COM6SRVR interprets the
FSUpdateRate as an unsigned 16-bit integer value.
Visual Basic does not support the use of unsigned data
types. Therefore, you have to pass a signed 16-bit
integer and allow the COM6SRVR to interpret it as
unsigned. Thus, to allow slower update intervals than
32767 ms, a VB programmer would pass a negative value
(see examples below):
Value passed is –1 (result is 65535 ms/update)
Value passed is –32768 (result is +32768 ms/update)
Value passed is –30000 (result is +35536 ms/update)
Value passed is –25536 (result is +40000 ms/update)
Value passed is +32767 (result is +32767 ms/update)
Value passed is +10 (result is +10 ms/update)

COM6SRVR User’s Guide 49

Ethernet communication with Gem6K

Inputs (brick) Description: Use the Inputs property to check the current state of

the inputs (TIN) on a specific brick.
Visual Basic: object.Inputs(brick As Integer) As Long
Visual C++: long object.GetInputs(short brick)
Delphi: Longint_variable := Object_variable.Inputs(brick as

Smallint)
Parameter: brick Short Integer.

Represents the number of the brick where the
inputs reside. Range is 0-3. Brick 0
represents the onboard inputs. Bricks 1-3
represent expansion I/O bricks 1-3.

Return Type: Long Integer.
The value represents the current state of the inputs
(TIN) for the specified brick.

Remarks: This is a read-only property.
This property requires fast status to be enabled with
FSEnabled property.

IPAddress Description: The IPAddress property returns the controller’s IP
Address (NTADDR).

Visual Basic: object.IPAddress As Long
Visual C++: long object.GetIPAddress()
Delphi: Longint_variable := Object_variable.IPAddress
Parameter: NONE
Return Type: Long Integer.

The value represents the controller’s IP Address
(NTADDR).

Remarks: This is a read-only property.
This property requires fast status to be enabled with
FSEnabled property.

Limits Description: The Limits property returns the current limit status
(TLIM).

Visual Basic: object.Limits As Long
Visual C++: long object.GetLimits()
Delphi: Longint_variable := Object_variable.Limits
Parameter: NONE
Return Type: Long Integer.

The value represents the current limit status (TLIM).
Remarks: This is a read-only property.

This property requires fast status to be enabled with
FSEnabled property.

MotorPos Description: The MotorPos property returns the current commanded
position (TPC).

Visual Basic: object.MotorPos As Long
Visual C++: long object.GetMotorPos()
Delphi: Longint_variable := Object_variable.MotorPos
Parameter: NONE
Return Type: Long Integer.

The value represents the current commanded position
(TPC) in counts.

Remarks: This is a read-only property.
This property requires fast status to be enabled with
FSEnabled property.

COM6SRVR User’s Guide 50

Ethernet communication with Gem6K

MotorVel Description: The MotorVel property returns the current commanded

motor velocity (TVEL).
Visual Basic: object.MotorVel As Long
Visual C++: long object.GetMotorVel()
Delphi: Longint_variable := Object_variable.MotorVel
Parameter: NONE
Return Type: Long Integer.

The value represents the current commanded velocity
(TVEL) in counts.

Remarks: This is a read-only property.
This property requires fast status to be enabled with
FSEnabled property.

Outputs (brick) Description: The Outputs property returns the state of the outputs
(TOUT) on the specified brick.

Visual Basic: object.Outputs(brick As Integer) As Long
Visual C++: long object.GetOutputs(short brick)
Delphi: Longint_variable := Object_variable.Outputs(brick as

Smallint)
Parameter: brick Short Integer.

Represents the number of the brick where the
outputs reside. Range is 0-3. Brick 0
represents the onboard outputs. Bricks 1-3
represent expansion I/O bricks 1-3.

Return Type: Long Integer.
The value represents the state of the outputs (TOUT) on
the specified brick.

Remarks: This is a read-only property.
This property requires fast status to be enabled with
FSEnabled property.

SettlingTime Description: The SettlingTime property returns the time it took for
the last move to settle within into the target zone
(TSTLT).

Visual Basic: object.SettlingTime
Visual C++: long object.GetSettlingTime()
Delphi: Longint_variable := Object_variable.SettlingTime
Parameter: NONE
Return Type: Short Integer.

The value represents the number of milliseconds it took
for the last move to settle within the target zone.

Remarks: This is a read-only property.
This property requires fast status to be enabled with
FSEnabled property.

SystemStatus Description: The SystemStatus property returns the system status
(TSS) for task 0 only.

Visual Basic: object.SystemStatus As Long
Visual C++: long object.GetSystemStatus()
Delphi: Longint_variable := Object_variable.SystemStatus
Parameter: NONE
Return Type: Long Integer.

The value represents the system status (TSS) for task 0
only.

Remarks: This is a read-only property.
This property requires fast status to be enabled with
FSEnabled property.

COM6SRVR User’s Guide 51

Ethernet communication with Gem6K

Timer Description: The Timer property returns the current Timer value

(TTIM) for task 0 only.
Visual Basic: object.Timer As Long
Visual C++: long object.GetTimer()
Delphi: Longint_variable := Object_variable.Timer
Parameter: NONE
Return Type: Long Integer.

The value represents the current Timer value (TTIM) for
task 0 only.

Remarks: This is a read-only property.
This property requires fast status to be enabled with
FSEnabled property.

Triggers Description: The Triggers property returns the Trigger Interrupt
Status (TTRIG).

Visual Basic: object.Triggers As Long
Visual C++: long object.GetTriggers()
Delphi: Longint_variable := Object_variable.Triggers
Parameter: NONE
Return Type: Long Integer.

The value represents the current state of the Trigger
Interrupt Status (TTRIG).

Remarks: This is a read-only property.
This property requires fast status to be enabled with
FSEnabled property.

UserStatus Description: The UserStatus property returns the current state of
the user status register (TUS).

Visual Basic: object.UserStatus As Long
Visual C++: long object.GetUserStatus()
Delphi: Longint_variable := Object_variable.UserStatus
Parameter: NONE
Return Type: Long Integer.

The value represents the current state of the user
status register (TUS).

Remarks: This is a read-only property.
This property requires fast status to be enabled with
FSEnabled property.

Var (varnum) Description: The Var property returns the value of the specified
real variable (VAR). Variables VAR1 through VAR12 may
be reported. NOTE: This property must be used in
conjunction with the Connect2 method (1Mode=2).

Visual Basic: object.Var(varnum As Integer) As Double
Visual C++: double object.GetVar(short varnum)
Delphi: double_variable := Object_variable.Var(varnum as

Smallint)
Parameter: varnum Short Integer

Represents number of the real variable
(VARvarnum). Range is 1-12.

Return Type: Double.
The value represents the value of the specified real
variable (VAR). The initial value is zero until an
Extended Fast Status packet arrives.

Remarks: This property is valid only with the first client
connection to Gem6K, when connected using Connect2
method with 1Mode=2.
Read Only.
Requires FastStatus to be enabled, or use of
RequestFastStatusUpdate or NTSFS command, or generation
of an Alarm in the Gem6K.

COM6SRVR User’s Guide 52

Ethernet communication with Gem6K

VarB (varnum) Description: The VarB property returns the value of the specified
binary variable (VARB).

Visual Basic: object.VarB(varnum As Integer) As Long
Visual C++: long object.GetVarB(short varnum)
Delphi: Longint_variable := Object_variable.VarB(varnum as

Smallint)
Parameter: varnum Short Integer.

Represents number of the binary variable
(VARBvarnum). Range is 1-10.

Return Type: Long Integer.
The value represents the value of the specified binary
variable (VARB).

Remarks: This is a read-only property.
This property requires fast status to be enabled with
FSEnabled property.

VarI (varnum) Description: The VarI property returns the value of the specified
integer variable (VARI).

Visual Basic: object.VarI(varnum As Integer) As Long
Visual C++: long object.GetVarI(short varnum)
Delphi: Longint_variable := Object_variable.VarI(varnum as

Smallint)
Parameter: varnum Short Integer.

Represents number of the binary variable
(VARIvarnum). Range is 1-10.

Return Type: Long Integer.
The value represents the value of the specified integer
variable (VARI).

Remarks: This is a read-only property.
This property requires fast status to be enabled with
FSEnabled property.

COM6SRVR User’s Guide 53

COM6SRVR Error Codes

Error Code Description
-1 Bad Ethernet connection due to socket error
-2 Ethernet connection was shut down
-3 Connection attempt failed
-4 Maximum number of Ethernet connections exceeded
-5 Ethernet or RS232 connection not yet established
-6 No filename specified
-7 Unable to locate specified file
-8 Unable to open specified file
-9 Unable to ping Ethernet connection
-10 Unable to create Ethernet socket
-11 Invalid parameter passed to function
-12 Unable to create or connect Ethernet watchdog socket
-13 Unable to create or connect Ethernet fast status socket
-14 Unable to create or connect Ethernet alarm socket
-15 Unable to create or connect Ethernet command socket
-16 Unable to create client ring buffer for Ethernet command socket
-17 SetWatchdog returns this error when Windows runs out of timers.
-18 Unable to write due to XOFF condition (Gemini server only)
-19 WriteBlocking timed out
-20 SendFileBlocking was canceled

COM6SRVR User’s Guide 54

COM6SRVR Programming Notes

Calls to COM6SRVR
All calls to the COM6SRVR are blocking calls. Programming control does not return to the
client program until the requested operation has been completed in the COM6SRVR. During
the call, the Windows operating system continues to process other system calls and timer
messages.

Be careful to avoid multiple, simultaneous calls to the server from within the same process.
This situation typically arises if there are multiple timer messages being processed by the client
application. Because of the nature of COM design, an error would be generated if a timer
message initiates a request to the server while another server request from the same client is
already in progress.

How to Include the
COM6SRVR in a Visual
Basic application

All of the Visual Basic samples use a technique known as late binding to interface with the
COM6SRVR. The COM6SRVR is not linked at compile time; rather, the link is created
dynamically at run time. Unlike an OCX control that needs to be added to a VB form, the
COM6SRVR does not require to be added to a form. Creating and using the COM6SRVR is
all performed in software. Creating the COM6SRVR is performed with the CreateObject
VB function.

How to upgrade a
Visual Basic application
to use the latest
COM6SRVR

You should create your Visual Basic application using the late binding technique to interface
with the COM6SRVR (see above). The benefit, here, is that whenever a new version of the
COM6SRVR is available or installed on the PC, all applications written in Visual Basic with
the late binding technique should continue to run satisfactorily.

The latest COM6SRVR may be downloaded from the Support portion of the
Compumotor web site at http://www.compumotor.com.

How to include the
COM6SRVR in a Visual
C++ application

The process below demonstrates how to create a minimal dialog-based application that
includes the Com6srvr. Refer also to the sample applications installed in the Motion
Planner\Samples\Vc5 directory. (NOTE: The samples are installed only if you use the “custom”
installation option.)

1. Using Visual C++ AppWizard …
a. Create an MFC Exe application.
b. Select the “Dialog based” option.
c. In the Wizard steps it is not necessary to select the “ActiveX” or “Automation” check

boxes.
2. When the application is created, include the afxole.h and afxdisp.h header files. These

header files add libraries required for Ole Automation and the COleDispatchDriver class.
3. Initialize the Ole libraries with a call to AfxOleInit. (Refer to sample applications.)
4. Using Visual C++ Class Wizard …

a. Click the “Add Class…” button and select “From a Type Library” from the drop-down
menu.

b. In the “Import From Type Library” dialog, locate the Com6srvr.tlb file and click the
Open button. (The Com6srvr.tlb file is included on the Motion Planner CD-ROM.
Recommendation: Copy this file to your project directory.)

c. Select the relevant interface class (“INet” for Gem6K Ethernet, “IRS232” for Gem6K
RS232, or “IGemini” for the Gemini drives). Once the class is imported, the wizard
creates two new files and adds them to the project: Com6srvr.cpp and Com6srvr.h.

5. Add a class instance for the interface class you selected in Step 4.c. above (INet, IRS232
or IGemini). Refer to the m_NetServer variable in the VC_Ethernet sample.

6. To understand how to use the libraries, study the sample applications. Pay particular
attention to the code related to the Connect, Write and Read methods.

COM6SRVR User’s Guide 55

http://www.parkermotion.com/

COMSRVR Programming Notes

How do I rebuild my
Visual C++ project with
the new COM6SRVR?

If the COM6SRVR “Interface” changes (because Compumotor has added new properties or
methods), it is necessary to re-build your VC++ application and link in the new COM6SRVR
to take advantage of any of the new features. Use this step-by-step procedure:

1. Make a backup of your project.
2. Make a backup of your current Com6srvr.exe file (typically located in the

Windows\System\ directory or in the Program Files\Compumotor\Motion Planner\
directory).

3. Replace the Com6srvr.exe by overwriting the existing version with the new one from the
CD-ROM. Register the new Com6srvr by executing the Com6srvr.exe once. The mouse
pointer may change to an hourglass for a couple of seconds while it’s being registered.

4. Start VC++ and open the Project Workspace (File > Open Workspace).
5. Use menu item View > Workspace and select the File View tab.
6. Expand the Source Files node and highlight the Com6srvr.cpp file. Remove the file from

the project by pressing the DEL key.
7. Expand the Header Files node in the Workspace window. Highlight the Com6srvr.h file

and remove it from the project by pressing the DEL key.
8. Save the Workspace (File > Save Workspace) and exit VC++.
9. Start Windows Explorer and locate the project directory.
10. Delete the Com6srvr.cpp, Com6srvr.h and Com6srvr.tlb files.
11. Copy the new Com6srvr.tlb from the CD-ROM into the project directory.
12. Locate the project’s Class Wizard database file (.clw file) and delete it.
13. Start VC++ and Open the project Workspace.
14. Note that the COM6SRVR Interfaces (IGemini, IRS232 or INet) no longer appear in the

Workspace Window’s Class View.
15. Run the class wizard (View > Class Wizard).
16. A dialog appears stating that the class wizard database file does not exist and prompts you

to re-build it from your source files. Click the YES button.
17. A “Select Source Files” dialog appears. Click OK.
18. The MFC Class Wizard dialog now appears. Click the Add Class button and select “From

a type library” on the drop-down menu.
19. Locate the Com6srvr.tlb file and click the Open button.
20. A “Confirm Classes” dialog appears. All classes (IRS232, INet and Igemini) are

highlighted. Select only the classes that are of particular interest. Accept the recommended
Header and Implementation File names of Com6srvr.h and Com6srvr.cpp. Click the OK
button.

21. Back at the MFC Class Wizard, click OK button.
22. Rebuild the complete project (Build > Rebuild All).
23. Save the Workspace (File > Save Workspace).

Overview: VB5
Samples on the CD-
ROM

The VB5 samples are installed if you select Custom installation when installing Motion
Planner. The samples are installed on the hard disk in the …\Motion Planner\Samples\VB5
directory. Each sample has its own sub-directory.

The VB5 samples are located on the CD-ROM in the directory Gem6K\Samples\VB5. Again,
each sample has its own sub-directory. To copy the files from the CD-ROM use Windows
Explorer to copy the sub-directory and its contents to a new location on your hard disk. NOTE,
however, that the file attributes will be set to read-only, because the CD-ROM is read-only
media. To change the attributes: Using Windows Explorer, locate the sub-directory. Open the
sub-directory such that all files are now visible. Use the Edit > Select All menu to select all files.
Then, use the menu File > Properties, the dialog shows a Read-Only box with a check mark
against it. Uncheck the box and click OK. Now it is possible to open the files and save them in
Visual Basic. When using Motion Planner's Custom install to install the samples, the read-only
attribute is automatically reset.

There are four VB5 Samples:

• SimpleOne

COM6SRVR User’s Guide 56

 COMSRVR Programming Notes

• SimpleOnePlus
• Terminal
• Gem6K_Capture_Sample

To become familiar with the COM6SRVR and how it is used in Visual Basic, review the
SimpleOne application. This sample demonstrates the absolute basics. It deals with creating an
instance of the COM6SRVR using Visual Basic’s CreateObject function. Then it
demonstrates how to make a connection to the Gem6K and how to close or disconnect a
connection. The main form also has two buttons, “Send Command” and “Read Response,” to
demonstrate the Write and Read methods of the COM6SRVR. The “Easy Get Data” and “Get
Data” buttons demonstrate two techniques to get data from the Ethernet Fast Status.

The Terminal application builds upon the basics introduced by the SimpleOne application. It
creates a Terminal to communicate with the Gem6K via Ethernet or RS-232. Buttons to
demonstrate the SendFile, GetFile and SendOS methods are included. The Fast Status and
Alarms are demonstrated in the form frmFastStatus.

Gem6K_Capture_Sample is a utility as much as a sample. It can be used to capture fast status
packets from the Gem6K and store the data for later use.

Overview: Using Fast
Status

Fast Status is a tool you can use to keep the COM6SRVR informed of conditions within the
Gem6K (conditions such as the values of motor position, encoder position, axis status, and the
current value of some of the integer and binary variables). A client application can interrogate
the COM6SRVR’s fast status data to check various Gem6K conditions (input states, variable
values, system conditions, etc.) in two ways:

• Interrogate individual fast status elements via their respective properties. This is the
easiest to implement.

• Interrogate the entire fast status data structure. This is more complex, is advantageous
when you need to check many data elements at one time.

Interrogating Individual Fast Status Elements

The fast status data structure comprises many elements. Each element may be interrogated
through the use of its respective property. The table below lists each fast status data element
and its respective property.

Fast Status — Packet Data Definition (280 bytes total)

*ExFastStatus — Packet Data Definition (376 bytes total)
Type Description Bytes Property (see pages 24-

32 and 44-53)
WORD wUpdateID Unique update ID for synch channel 2 No property available
WORD wCounter Time Frame Counter 2 Counter
DWORD dwMotorPos[8] Commanded Position (TPC) 32 MotorPos
DWORD dwEncPos[8] Encoder Position (TPE) 32 EncoderPos
DWORD dwMotorVel[8] Commanded Velocity (TVEL) 32 MotorVel
DWORD dwAxisStatus[8] Axis Status (TAS) 32 AxisStatus
DWORD dwSystemStatus System Status (TSS) 4 SystemStatus
DWORD dwErrorStatus Error Status (TER) 4 ErrorStatus
DWORD dwUserStatus User Status (TUS) 4 UserStatus
DWORD dwTimer Timer (TTIM) 4 Timer
DWORD dwLimits Limit Status (TLIM) 4 Limits
DWORD dwInputs[4] Input Status (TIN) 16 Inputs
DWORD dwOutputs[4] Output Status (TOUT) 16 Outputs
DWORD dwTriggers Trigger Status (TTRIG) 4 Triggers
WORD wAnalogIn[2] Analog Input Value (TANI - in counts) 4 AnalogInput
DWORD dwVarb[10] Binary Variable Values (VARB1 – VARB10) 40 VarB
DWORD dwVari[10] Integer Variable Values (VARI1 – VARI10) 40 VarI
DWORD dwIPAddress IP Address (NTADDR) 4 IPAddress
DWORD dwCmdCount Command Count 4 CommandCount
*DWORD dwVar[12] Real Variable Values (VAR1 - VAR12) 96 Var

 NOTE: Each call to the COM6SRVR incurs overhead; therefore, you should be aware that

interrogating many different fast status elements at one time is slower than interrogating the

COM6SRVR User’s Guide 57

COMSRVR Programming Notes

entire data structure (see below).

Interrogating the Entire Fast Status Structure

Accessing data in the fast status structure is more complex than interrogating individual
elements, but it has the advantage that only one call to the COM6SRVR is required to access
the entire fast status structure — this reduces overhead when multiple data elements are
required.

The COM6SRVR FastStatus property (see pages 27 and 47) returns a VARIANT data type,
which is actually an array of bytes. The array of bytes is copied into a structure. Ordering the
array of bytes and structure elements is very important to ensure that the correct data bytes are
copied into the correct structure elements. (Do not change the fast status structure or
TypeDef.) In Visual Basic, use the Windows API CopyMemory function to copy bytes into the
structure; in Visual C++, the copying is performed through use of SAFEARRAYS (refer to the
MakeFastStatus function in the VC_Ethernet sample provided).

There are two techniques for updating the Fast Status: Streaming and On Demand.

• The Streaming technique is particularly useful for HMI type applications where a
constant stream of data at a set interval is required. To use streaming, set a streaming
interval with the FSUpdateRate property (see pages 28 and 49) and enable streaming
by setting the FSEnabled property to TRUE (see pages 28 and 49).

• The On Demand technique can reduce network traffic by sending fast status packets
only when required, rather than at a pre-defined interval. The fast status packet can be
updated by a call to the COM6SRVR RequestFastStatusUpdate method (see pages 16
and 36), or under Gem6K program control with the Gem6K command NTSFS.
Similarly, when a Gem6K generates an alarm, such as INTSW1, a fast status packet
(280 bytes) is automatically sent to the COM6SRVR. Note that the On Demand
technique operates independent of the FSEnabled property and the FSUpdateRate
property. The sample VB program called SimpleOnePlus demonstrates the use of
RequestFastStatusUpdate.

Customizing Fast
Status

DEL PLCP1
DEF PLCP1
 VARI1 = VARI1 + 1
 VARB1 = 1FS
END

PCOMP PLCP1

VARI1=0

SCANP PLCP1

The Fast Status structure (see page 57) provides most of the frequently required system
parameters (e.g., motor position and axis status). However, there are times when a specific
status condition or parameter is required, but not provided by default. One such example might
be Following Status (TFS).

The Fast Status packet always includes ten integer variables (VARI1 – VARI10) and ten binary
variables (VARB1 – VARB10). This allows you to customize part of the Fast Status packet by
copying status conditions of interest into the VARI or VARB variables. Below are two scenarios
that demonstrate two methods of using variables to customize the Fast Status.

Scenario 1: An HMI application must inform the operator of the total number of products
made, the number of products that meet specification (passes), and number of
products that fail to meet specification. In this type of scenario, the Total Number is
assigned to VARI1, the number of Passes to VARI2, and the number of failures to
VARI3. These variables are then updated as needed. For example, when a product is
made, VARI1 is incremented. This insures the data is automatically updated in the
Fast Status packet; then the HMI application can use the VARI(1) property to
interrogate the VARI1 value.

Scenario 2: Another method to maintain the information is to use a PLCP program, launched
in the Scan Mode with the SCANP command. The PLCP program updates the variable
(VARI or VARB). In this manner, the parameter of interest can be mapped to a specific
variable. Example: Use VARB to allow monitoring of Following Status (TFS) and
allow VARI1 to auto-increment (see code at left).

Then use the “ActiveXFastPanel” in Motion Planner’s Panel Maker to monitor the
“Variables” grid. You’ll notice that VARI1 is continually incrementing and that as you
enable and disable Following on axis 1 (FOLEN1 / FOLEN0), bit 6 of VARB1 is set and
cleared.

COM6SRVR User’s Guide 58

 COMSRVR Programming Notes

Overview: Using
Variable Packets

Using variable packets, you can quickly and efficiently transfer large amounts of data from the
COM6SRVR to the Gem6K. The variables packet comprises: integer variables 1-12 (VARI1 –
VARI12), real variables 1-12 (VAR1 – VAR12), and binary variables 1-8 (VARB1 – VARB8).

Variable packets can be sent by one of two COM6SRVR methods:

• The SendVariable method (see pagesx 18 and 38) allows transmission of one variable.
To use SendVariable, you define: (a) a mask to specify which variable to update, and
(b) the value of the variable. Mask bits for Visual Basic and Visual C++ are provided
below.

• The SendVariablePacket method (see pages 20 and 40) allows one or all variables to
be sent in one packet. The SendVariablePacket method requires a SendVariable
structure to be populated, copied into a variant and then pass the variant to the
SendVariablePacket Method. The SendVariable structure comprises several elements:
a Mask, several reserved elements and an array of twelve elements for integer
variables, an array of twelve elements for real variables and an array of eight elements
for binary variables (see structure lists below). Several mask constants can be Or’ed
together to allow Gem6K variables to be updated (see mast lists below).

TIP: Using the a variable packet method (SendVariable or SendVariablePacket) and an On
Demand Fast Status interrogation technique (RequestFastStatusUpdate method or the Gem6K
command NTSFS) provides a clean and efficient communication tool between the client
application and the Gem6K program. Although variables can be sent as a command using the
Write method, the time taken to parse the command and check data validity is longer than the
time to send an entire variable packet.

A sample VB program called SimpleOnePlus is provided; it demonstrates the use of the
SendVariable and SendVariablePacket COM6SRVR methods.

Variable Structure for Visual Basic Variable Structure for Visual C++
Type SendVariableStructure
 Mask As Long
 Reserved1 As Long
 Reserved2 As Long
 Reserved3 As Long
 VarI(1 To 12) As Long
 VarR(1 To 12) As Double
 VarB(1 To 8) As Long
End Type

typedef struct VARIABLEPACKETStruct {
 int nVariableMask;
 int nReserved1;
 int nReserved2;
 int nReserved3;
 int VARI[12];
 double VAR[12];
 int VARB[8];
} VARIABLEPACKET, *LPVARIABLEPACKET;

Variable Packet Mask Bits for Visual Basic Variable Packet Mask Bits for Visual C++
Public Const VARI1 As Long = 1
Public Const VARI2 As Long = 2
Public Const VARI3 As Long = 4
Public Const VARI4 As Long = 8
Public Const VARI5 As Long = 16
Public Const VARI6 As Long = 32
Public Const VARI7 As Long = 64
Public Const VARI8 As Long = 128
Public Const VARI9 As Long = 256
Public Const VARI10 As Long = 512
Public Const VARI11 As Long = 1024
Public Const VARI12 As Long = 2048

Public Const VAR1 As Long = 4096
Public Const VAR2 As Long = 8192
Public Const VAR3 As Long = 16384
Public Const VAR4 As Long = 32768
Public Const VAR5 As Long = 65536
Public Const VAR6 As Long = 131072
Public Const VAR7 As Long = 262144
Public Const VAR8 As Long = 524288
Public Const VAR9 As Long = 1048576
Public Const VAR10 As Long = 2097152
Public Const VAR11 As Long = 4194304
Public Const VAR12 As Long = 8388608

Public Const VARB1 As Long = 16777216
Public Const VARB2 As Long = 33554432
Public Const VARB3 As Long = 67108864
Public Const VARB4 As Long = 134217728
Public Const VARB5 As Long = 268435456
Public Const VARB6 As Long = 536870912
Public Const VARB7 As Long = 1073741824
Public Const VARB8 As Long = &H80000000

#define VARI1 0x00000001
#define VARI2 0x00000002
#define VARI3 0x00000004
#define VARI4 0x00000008
#define VARI5 0x00000010
#define VARI6 0x00000020
#define VARI7 0x00000040
#define VARI8 0x00000080
#define VARI9 0x00000100
#define VARI10 0x00000200
#define VARI11 0x00000400
#define VARI12 0x00000800

#define VAR1 0x00001000
#define VAR2 0x00002000
#define VAR3 0x00004000
#define VAR4 0x00008000
#define VAR5 0x00010000
#define VAR6 0x00020000
#define VAR7 0x00040000
#define VAR8 0x00080000
#define VAR9 0x00100000
#define VAR10 0x00200000
#define VAR11 0x00400000
#define VAR12 0x00800000

#define VARB1 0x01000000
#define VARB2 0x02000000
#define VARB3 0x04000000
#define VARB4 0x08000000
#define VARB5 0x10000000
#define VARB6 0x20000000
#define VARB7 0x40000000
#define VARB8 0x80000000

COM6SRVR User’s Guide 59

	Communications Server (COM6SRVR)
	Visual Basic Connection Example
	Visual C++ Connection Example
	Delphi Connection Example
	How to Disconnect
	VB and VBScript
	C++
	Delphi

	Be Aware of Background Commands

	COM6SRVR.RS232 Interface – RS-232 communication w
	RS-232 Methods
	Connect (port)
	Flush
	GetFile (filename)
	Read ()
	SendFile (filename)
	SendFileQuiet (filename)
	SendOS (filename)
	SetBpsRate (baudrate)
	Write (cmd)

	COM6SRVR.GEMINI Interface – RS-232 communication
	RS-232 Methods
	Connect (port)
	Flush
	GetFile (filename)
	Read ()
	SendFile (filename)
	SendOS (filename)
	Write (cmd)

	COM6SRVR.NET Interface – Ethernet communication w
	Ethernet Methods
	Connect (netaddress)
	Connect2 (netaddress, lMode)
	Connect3 (netaddress, lMode, bQuiet, lTimeout)
	Flush
	GetFile (filename)
	IsWatchdogTimedOut
	Ping6K(netaddress, lTimeout)
	Read ()
	RequestFastStatusUpdate
	SendFile (filename)
	SendFileBlocking (filename)
	SendFileQuiet (filename)
	SendFileQuietBlocking (filename)
	SendVariable (nVariableMask, vaValue)
	SendVariablePacket (vaPacket)
	SetSendFileDelay (delay)
	SetWatchdog (wTimeout, wTicker)
	Write (cmd)
	WriteBlocking (cmd, timeout)

	Ethernet Properties
	AlarmStatus (bit)
	AnalogInput (channel)
	AxisStatus (axis)
	CommandCount
	Counter
	EncoderPos (axis)
	ErrorStatus
	ExFastStatus
	FastStatus
	FSEnabled
	FSUpdateRate
	Inputs (brick)
	IPAddress
	Limits
	MotorPos (axis)
	MotorVel (axis)
	Outputs (brick)
	SystemStatus
	Timer
	Triggers
	UserStatus
	Var (varnum)
	VarB (varnum)
	VarI (varnum)

	COM6SRVR.GEM6K Interface – Ethernet communication
	Ethernet Methods
	Connect (netaddress)
	Connect3 (netaddress, bQuiet, lTimeout)
	Flush
	GetFile (filename)
	IsWatchdogTimedOut
	PingGem6K(netaddress, lTimeout)
	Read ()
	RequestFastStatusUpdate
	SendFile (filename)
	SendFileBlocking (filename)
	SendFileQuiet (filename)
	SendFileQuietBlocking (filename)
	SendVariable (nVariableMask, vaValue)
	SendVariablePacket (vaPacket)
	SetSendFileDelay (delay)
	SetWatchdog (wTimeout, wTicker)
	Write (cmd)
	WriteBlocking (cmd, timeout)

	Ethernet Properties
	ActualAccel
	ActualTorque
	ActualVelocity
	AlarmStatus (bit)
	AnalogInput (channel)
	AxisStatus
	CommandCount
	CommandedTorque
	ConfigurationStatus
	Counter
	EncoderPos
	ErrorStatus
	ExtendedAxisStatus
	FastStatus
	FSEnabled
	FSUpdateRate
	Inputs (brick)
	IPAddress
	Limits
	MotorPos
	MotorVel
	Outputs (brick)
	SettlingTime
	SystemStatus
	Timer
	Triggers
	UserStatus
	Var (varnum)
	VarB (varnum)
	VarI (varnum)

	COM6SRVR Error Codes
	COM6SRVR Programming Notes
	Calls to COM6SRVR
	How to Include the COM6SRVR in a Visual Basic application
	How to upgrade a Visual Basic application to use the latest COM6SRVR
	How to include the COM6SRVR in a Visual C++ application
	How do I rebuild my Visual C++ project with the new COM6SRVR?
	Overview: VB5 Samples on the CD-ROM
	Overview: Using Fast Status
	Customizing Fast Status
	Overview: Using Variable Packets

