
PLCs, PCs, and PACs:
When the Lines in Motion Control Become Blurred.

PLCs, PCs, and PACs:
Asking the right questions early simplifies optimizing your
next motion control system.

Image on front page: A
programmable logic controller
(PLC) is an industrial solid-state
computer that monitors inputs
and outputs, and makes logic-
based decisions for automated
processes or machines. PLCs
were designed to replace relays,
timers and I/O.

Marissa K. Tucker is the product
manager for control and HMI products
with Parker Hannifin’s Electrome-
chanical and Drives Division, where
her duties include creating alignment
between key market segments, new
product development, and product
messaging. Marissa received her
bachelor’s degree in mechanical
engineering from the University of
California—Davis and continues to
work directly in the market to
produce control and HMI products
that focus on both capability and
ease of use.

Jim Wiley is a product manager
for servo and stepper drives with
Parker Hannifin’s Electromechanical
and Drives Division, where he began
his motion control career in 1996.
After graduating from Carnegie
Mellon University with a bachelor’s
degree in mechanical engineering,
Jim joined Parker as an application
engineer and has served a variety
of marketing, product management,
and application engineering roles
across the entire range of
electromechanical technologies.

Personal computers such as
Parker’s Industrial PC PowerStation
allow users to develop their own
application to control multiple
sub-devices such as controllers
and visualization systems.

Historically, motion controllers,
programmable logic controllers
(PLCs), and industrial personal
computers (PCs), which have clearly
defined functions in a control
system, were separate components.
With the rise of programmable
automation controllers (PACs),
motion controllers are increasingly
difficult to distinguish from PLCs.
Programmers are building custom
applications on PCs to create
decentralized control schemes
that command a wide array of
sub-control devices, including
motion controllers, drives, vision
systems, etc. The trend of merging
traditionally separate control
components can add confusion
and complexity to the task of
designing a new machine or
expanding the functionality of an
existing one. With a bit of knowledge
of the different control architectures
and knowing the right questions
to ask, designers can quickly
identify which control scheme
will be best for their application.
Before starting the controller
selection process, it is important
to understand what the different
options are and why they are used.

THE DIFFERENCE BETWEEN
PLCS, PCS, AND PACS
Essentially, a PLC is a ruggedized
control device made up of a
microprocessor, memory, and
a variety of peripherals. PLCs
typically use IEC 61131-3, an
industry-standardized set of
programming languages, including
Ladder Diagram. Ladder logic,
a language that reads the same
as the electrical diagrams
maintenance crews are already
familiar with, makes the PLC a
popular choice. Most developers
and maintenance personnel have
experience with programming and
debugging Ladder, minimizing the
need for training. Standardized
programming ensures longevity
as the machine can easily be
serviced in the future, and reduces
the dependency on the original

programmer. The major limitation
with PLCs is that they were designed
to replace relays, timers, and I/O.
This left their functionality limited
when it came to the realm of
motion control and visualization.

PLCs, PCs, and PACs:

 Traditional PLCs typically rely on
peripheral devices such as smart
drives and stand-alone motion
controllers to provide advanced
functionality. A potential drawback
of this motion-control architecture
is the need to maintain separate
programs for each device. Smart
drives and stand-alone motion
controllers often use proprietary
languages, canceling out the benefit
of using an IEC 61131-3 PLC in
the first place.
 Future maintenance in this type
of control scheme is incredibly
difficult because it is not always
obvious what is being controlled
by the PLC and what is being
controlled by the motion controller.
In the absence of proper documen-
tation, understanding the machine
often involves opening up the
cabinet and using a multi-meter
to trace connections or directly
connecting to the peripheral motion
systems via a laptop. If the repair
person is not familiar with the
proprietary language used by the
motion controller, the diagnostics
process could lead to excess
downtime and increased expenses.
 Industrial PCs, first introduced
in the mid-1980s, are high-reliability
computers with hardware and
operating systems engineered to
withstand the constant vibrations,

using either pre-built APIs or by
writing their own communication
drivers. This freedom leads to the
creation of novel applications
using smart subsystems that may
not have been intended or initially
designed to work together. Stand-
alone motion controllers, in the
form of smart drives or multi-axis,
are examples of smart subsystems.
Motion-controller manufacturers
typically provide an API that allows
the developer to send motion
commands to the controller-
limiting the need to learn a full,
separate language. Alternatively,
some developers will choose to
leverage the real-time capabilities
of the motion system and program
the device in its native, embedded
language, with the PC application
calling for these complex routines
to run when needed.
 Beyond increased flexibility,
these applications have several
benefits over traditional PLC
systems. The HMI (human machine
interface) is built right into the
control application itself, reducing
the need for additional devices for

The Parker Automation Controller is an example of a programmable
automation controller (PAC). PACs provide the ability for users to develop
their own drivers to connect to unique devices using ASCH. Like a PC,
it has visualization capabilities built in, allowing the user to develop a
complete application that incorporates programming the logic and the
human machine interface all in one software suite.

In response to the demand for more connectivity options, today’s motion
controllers increasingly offer support for multiple communication protocols.
For example, a modern PAC controller provides EtherCAT communication
for real-time motion, I/O, snf third-party device connectivity as well as
EtherNet/IP, PROFINET, and an OPC Server for machine-to-machine and
plant level communications.

temperature extremes, and wet
or dusty conditions common in
industrial environments. Industrial
PCs are most powerful to developers
who are comfortable programming
their own custom applications using
either Visual Basic, C#, C++, etc.
Using an industrial PC increases
flexibility, giving users the freedom
to communicate to any device

Connecting to other machines on the factory floor and integrating
internal drives are important considerations of machine design and
controller selection.

visualization. In addition, a single
programming language can be
used to control all subsystems.
This single PLC application can
also be a major downfall as the
machine ages. As an organization
matures or technology changes,
preferred programming languages
may shift, making it difficult to
develop, change, or maintain
older applications. In addition,
API is not a set standardized by
any organization, so migration
to a new language or OS may not
be possible, even when using the
same subsystems.
 Motion controllers offer designers
highly specialized functionality
for controlling and coordinating
the movement of motors within a
machine. A range of form factors
are available as motion-control
providers have developed solutions
based on smart drives, PCI cards,
Ethernet, and just about every
field bus ever created. Centralized
or distributed solutions offer
machine designers nearly endless
possibilities for crafting a system
that best fits their needs in terms
of performance, size, and cost. In
general, motion controllers rely
on a proprietary language that is
tailored to fit motion commands.
Most motion controllers have also
evolved to incorporate some of
the machine-control functions
usually associated with PLCs, such
as temperature monitoring and
discrete I/O control.
 Due to the proprietary nature
of motion languages, machines
designed around a specific controller
may include advanced functionality
but can sometimes be limited when
it comes to expansion. Single-PCB
motion controllers cannot easily add
additional axes of motion control
without ordering a new unit from
the factory. Bus-based motion
controllers have more flexibility
to add axes, but it is important to
ensure that the bus is both widely
offered by other device makers and
increasing in market adoption.
 PACs merge PLCs, PCs, and

motion controllers into a single
device. Rather than requiring
a separate stand-alone motion
controller, PACs provide multi-
axis motion trajectories over a
bus-such as EtherCAT-while drives
close the local PID loop around
the motor. This architecture not
only allows the entire system to be
programmed with IEC 61131-3,
but also within a singular develop-
ment environment-reaping
all the benefits of standardized
programming. Maintenance is
significantly reduced as the PAC
queries the drives to determine
the failure mode. Rather than
needing to open up a machine
to gain access to data, either
through manual multi-meter
readings or direct connection to
sub-devices, all the information
can be accessed by connecting
to a single PAC. When choosing a
PAC, it is important to select a bus
system that will allow flexibility
when choosing devices as well
as withstand the test of time.

A PAC controller that supports
EtherCAT as its main field bus but
also offers support for EtherNet/
IP, OPC client/server, Modbus
TCP, PROFINET, and PROFIBUS,
ensures that the controller is
“future-proof” and also compatible
with current industrial devices.

UNIVERSAL APPLICATION
QUESTIONS
It is critical to weigh a variety of
considerations to avoid ending up
with a less-than-optimal motion
control solution. By asking the right
questions before beginning the
specification process, the designer
can avoid making the wrong control
choice:

How is the application likely to
evolve over the next 20-25 years?
Consider what new functionality
and subsystems may be required.
Take the time to assess whether the
solutions you are considering have
the flexibility to readily integrate
new devices or subsystems.

PLCs, PCs, and PACs: When The Line in Motion Control Become Blurred. 06/19© 2019 Parker Hannifin Corporation

Parker Hannifin Corporation
Electromechanical & Drives Division
9225 Forsyth Park Dr.
Charlotte, NC 28273
phone 800-358-9070
fax 707-584-8015
www.parker.com

Will the system require a centralized,
deterministic control scheme?
This is common in industrial
applications where a single PAC
is in control of an entire system.
Or does the design require a
combination of multiple,
decentralized smart devices, such
as optical lab instruments, in
addition to motion control?

What communication protocols
offer the greatest flexibility and
longevity? There are so many
choices. It is important not only to
select a bus that works best for your
system (for example, EtherCAT is
best for high-speed motion control)
but also a bus that is proven, widely
used, and growing in installation.

How will space constraints
dictate system architecture and
component choices? Must the
system be compact enough to sit
on a benchtop or can it span many
meters? For instance, Ethernet-
based bus systems can transmit
data over extended distances,
whereas traditional motion
controllers are limited by the
quality of digital and analog signals
and restricted smaller ranges.

What existing integration and
programming resources are
available? Many organizations are
reluctant to take the time to acquire
a new skill set and third-party
services may be used in the future
to maintain a machine. The choice
of programming language is critical
in determining how quickly an
organization or maintenance crew
can diagnose, change, and develop
an application.

Designers who do not take the
time to determine the best control
scheme or choose components
too quickly without asking these
critical questions have the potential
for serious consequences further
down the road. It is important to
know and avoid these common
design mistakes:

Choosing a device without
application consideration. When
a controller is selected first, with
insufficient regard for the application,
it constrains the designer’s choices,
leading to longer and more expensive
development cycles. The controller
is often selected first when the
designer either defaults to a controller
he or she is familiar with or “falls in
love” with a controller gussied up
with all the latest bells and whistles,
forcing the designer to use comp-
onents that may not be ideal for
the application because they work
with the controller selected. As a
result, the designer may need to
find work-arounds to get a system
to operate correctly, increasing
development time. Similar problems
can arise when a designer does not
take the time to understand all
that the application entails.

No place to grow. When new
functionality requirements emerge,
the wrong controller can make it
difficult to expand or extend the
system. Without careful consid-
eration of how a motion-control
system is likely to evolve over its
lifetime, it is far too easy to select
a controller (such as a traditional
controller based on I/O) with
limited ability to accommodate
new devices or functionality.

Invest for the future. Selecting an
inadequate controller for a given
application to save a little money or
failing to plan for future necessary
expansions of an application all
but ensures a less-than-optimal
return on investment. Selecting
the wrong controller in the early
stages of system development will
demand additional design time
and could force the designer to
employ less efficient components
to allow the poorly chosen
controller to work. As the machine
matures and requires maintenance,
it may be difficult or impossible
to keep it running, and even more
so if the programming language
used was proprietary or no longer
commonly used, and even more
so if the original designer has
moved on to another organization.
If expansion is required to add
a feature or device to extend the
system’s lifespan and usability, but
the control bus used is no longer
available, the system may have
to be redesigned from scratch
instead. This can cost significant
development time and resources.
 All too often in today’s
quarterly bottom-line-driven
business environment, designers
are pushed to design the least
expensive solution that will serve
the application right now. Asking
honest questions and answering
them fully is the best way to ensure
that a new motion control system
can continue to evolve along
with the application’s changing
requirements, and continue to
provide a return on investment
for many years to come.

