TrueSeal™ Kynar® PVDF Fittings

Application data and comparison versus stainless steel

Parker's TrueSeal™ Kynar® PVDF range of fittings is the only push-to-connect fluoropolymer fitting on the market and brings the ease of a push-to-connect fittings to new markets. The fitting range offers unique solutions for applications with high temperatures, strong chemical concentrations or oxidizers such as ozone.

TrueSeal™ Kynar® PVDF fittings are particularly well suited to replace stainless steel in corrosive environments.

Key benefits of TrueSeal™ Kynar® PVDF products versus stainless steel:

- Non-corroding with no need to passivate
- Non-wetting/easy release
- · Chemically inert
- · Minimal metallic content yields minimal leaching
- · Can be cleaned with aggressive chemicals
- Broad range of process equipment components
- Increased purity performance over time
- · Smoother surface finish

Contact Information:

Parker Hannifin Corporation Fluid System Connectors Division 300 Parker Drive Otsego, MI 49078

phone 269 694 6555 fax 269 694 4614 fscsales@parker.com

www.parker.com

TrueSeal™ Kynar® PVDF fittings versus stainless steel

	TrueSeal™ Kynar® PVDF fittings	Stainless steel	
Corrosive environments	Well suited	Does not hold up well, stains	
Passivation required to aid in corrosion resistance?	No passivation required	Passivation required	
Does it wet well?	Yes, smooth finish releases dirt easily	No, rougher surface finish holds dirt	
Efficiency of fluid transfer	Efficient due to its smooth surface	Less efficient due to rough surface	
Promotion of biomass growth	Does not promote biomass growth; perfect for UHP water applications for biopharm and semiconductor markets	Rough surface promotes biomass growth	
Dirtiest effluent water	At startup; gets cleaner over time due to low leachables and extractables in the material	Cleanest at startup; metal ions break free over time, called rouging	

Water and beverage applications

Kynar® PVDF and Kynar Flex® PVDF

Properties

- · Resistant to most chemicals and solvents
- · Low permeability to most gases and liquids
- · High thermal stability
- · Mechanical strength at elevated temperature
- · Cold weather impact strength (specific to Kynar Flex®)
- · High purity
- High abrasion resistance
- · Readily processible, formable, and weldable
- · Resistant to sunlight degradation
- · Resistant to nuclear radiation
- · Resistant to fungus
- · Low flame and smoke characteristics

Chemical compatibility

- Chlorine
- Methyl chloroform
- Hydrochloric acid
- · Salt aater
- Chlorobenzene
- Sodium hypochlorite
- Hot sugars
- Sulfuric acid <98%
- Chlorinated salts
- Phosphoric acid
- · Hydrofluoric acid
- Metallic chlorides
- · Acid mixtures
- · Diesel/biodiesel

- Bromine (gaseous)
- Bromine water
- · Hydro bromic acid
- Bromobenzene
- · Brominated salts
- lodine
- · Salicylic acid
- <50% Acetic acid
- Methyl alcohol
- · Chromic acid
- · Nitric acid Deionized water (DI)
- · Other fuel mixtures

Benefits

Totally resistant*	Resistant with conditions
Water	Ketones
Strong acids	Amines
Strong oxidants	Strong bases
Halogens	"Fuming acids"
Aromatics and	
aliphatics	
Hydrocarbons	
Ozone	

Sterilization resistance: ozone, UV, gamma, steam, chemicals

Mechanical: flexibility, toughness, abrasion resistance

* Chemical resistance includes resistance to swelling, permeation, and stress cracking.

Kynar® PVDF connectors

Water and beverage systems

- Safely handles steam up to 145°C without loss of properties over many cycles.
- Commonly used to handle 16-18 me ohm-cm deionized water in Semiconductor and Pharmaceutical Facilities since 1982.
- Meets ASTM F-1673 chemical testing requirements for laboratory waste drainage systems (water combined with acids, bases, hydrocarbons, chlorinated cleaning solutions, & ketones)
- NSF 61 Listed for Drinking Water System Components
- FDA Listing for repeat contact with food

Typical applications

Chemical Related	Why Used	
Pulp & Paper	Bleaching chemicals	
Metal Preparation	High temperature acids	
Petrochemicals	Alkylation acids, hydrocarbon mixtures,	
	H ₂ S (Low permeation)	
Food & Beverage	FDA listing, steam cleaning, acidic foods	
Wastewater	Chemical mixtures, outdoor exposure, chlorine, caustics	
Potable Water	NSF 61, low leachables & extractables,	
	UV, ozone, Cl ₂	
Pesticides	Halogen resistance, low permeation	
General Chemical	pH <1 to 12, or 13.5 with Kynar Flex®	
Purity Related		
Semiconductor	High purity water, acids, ozone, FM4910	
Pharmaceutical/Biotech	Ozone, steam cleanable, FDA, resists biomass growth	
Flame Retardant		
Institutional/Plenum	Acid waste drainage, ASTM E84 0-10 rating	

Fluoropolymer comparison

Water and beverage connectors

Common sterilization chemicals

Ch	nemical	Kynar® PVDF	PFA	PTFE	
Et	hylene oxide (EtO)				
Pe	eracetic acid				
Ну	drogen peroxide				
Oz.	one				
Ch	lorine dioxide				

Common sterilization processes

Process	Temperature	Kynar® PVDF	PFA	PTFE
Pasteurization	Up to 194°F			
Boiling	212°F			
Autoclave	249.8°F			
Dry heat ovens	482°F			

2/17 © 2017 Parker Hannifin Corporation M&K

= Excellent

= Good

= Poor